Датский физик Нильс Хенрик Давид Бор (1885–1962) родился в Копенгагене и был вторым из трех детей Кристиана Бора и Эллен (в девичестве Адлер) Бор. Его отец был известным профессором физиологии в Копенгагенском университете. Он учился в Гаммельхольмской грамматической школе в Копенгагене и окончил ее в 1903 году. Бор и его брат Харальд, который стал известным математиком, в школьные годы были заядлыми футболистами. Позднее Нильс увлекался катанием на лыжах и парусным спортом.
Если в школе Нильса Бора в общем считали учеником обыкновенных способностей, то в Копенгагенском университете его талант очень скоро заставил о себе заговорить. Нильса признавали необычайно способным исследователем. Его дипломный проект, в котором он определял поверхностное натяжение воды по вибрации водяной струи, принес ему золотую медаль Датской королевской академии наук. В 1907 году он стал бакалавром. Степень магистра он получил в Копенгагенском университете в 1909 году. Его докторская диссертация по теории электронов в металлах считалась мастерским теоретическим исследованием.
В 1911 году Бор решил поехать в Кембридж, чтобы несколько месяцев поработать в лаборатории Дж. Дж. Томсона, первооткрывателя электрона. Мать Нильса и его брат Харальд одобрили эту идею. Не очень рада была, быть может, его невеста Маргарет, но и она согласилась.
Бор тогда мучительно размышлял над моделью Резерфорда и искал убедительные объяснения тому, что с очевидностью происходит в природе вопреки всем сомнениям: электроны, не падая на ядро и не улетая от него, постоянно вращаются вокруг своего ядра. Вот что пишут в книге «Биография атома» К. Манолов и В. Тютюнник:
«Если у водорода только один электрон, каким образом можно объяснить тот факт, что он излучает несколько различных по длине волны световых лучей?» — думал Бор. Он вновь возвратился к теории Никольсона. Блестящее согласие между вычисленными и наблюдаемыми значениями отношений длин волн спектров является сильным аргументом в пользу этой теории. Однако Никольсон отождествляет частоту излучения с частотой колебаний механической системы. Но системы, в которых частота является функцией энергии, не могут испускать конечного количества однородного излучения, так как при излучении частота их будет меняться. Кроме того, системы, рассчитанные Николь-соном, будут неустойчивы при некоторых формах колебаний. И, наконец, теория Никольсона не может объяснить сериальные законы Баль-мера и Ридберга.
— Хансен, мне кажется, ответ есть! — сказал Бор. — С помощью выведенного мною условия устойчивости орбиты электрона в атоме можно рассчитать скорость движения электрона по орбите, ее радиус и полную энергию электрона на любой орбите. Причем все формулы содержат один и тот же множитель, так называемое квантовое число, которое принимает те же целочисленные значения 1, 2, 3, 4 и т. д. Каждому из этих чисел соответствует определенный радиус орбиты… — Бор немного помолчал и продолжал. — Ну конечно же, теперь все ясно. Атом может существовать, не излучая энергии, только в определенных стационарных состояниях, каждое из которых характеризуется своим значением энергии. Если электрон переходит с одной орбиты на другую, атом либо испускает, либо поглощает энергию в виде особых порций — квантов!..
— Так вот в чем секрет! — воскликнул Хансен. — Значит, спектр атома отражает его строение!
— Теперь все становится на свои места. Ясно, почему атом водорода испускает несколько видов лучей. Если пронумеруем орбиты, начиная с самой близкой к ядру, то можно сказать, что электрон перескакивает с четвертой на первую, с третьей на первую, с третьей на вторую орбиту и т. д. Каждый перескок сопровождается излучением света соответствующей длины волны. Очень надеюсь, что мне удастся найти и количественную зависимость…
В 1913 году Нильс Бор опубликовал результаты длительных размышлений и расчетов, важнейшие из которых стали с тех пор именоваться постулатами Бора: в атоме всегда существует большое число устойчивых и строго определенных орбит, по которым электрон может мчаться бесконечно долго, ибо все силы, действующие на него, оказываются уравновешенными; электрон может переходить в атоме только с одной устойчивой орбиты на другую, столь же устойчивую. Если при таком переходе электрон удаляется от ядра, то необходимо сообщить ему извне некоторое количество энергии, равное разнице в энергетическом запасе электрона на верхней и нижней орбите. Если электрон приближается к ядру, то лишнюю энергию он «сбрасывает» в виде излучения…