С таких попыток начал и Лобачевский. Чтобы доказать пятую аксиому, он принял противоположное этой аксиоме допущение, что к данной прямой через данную точку можно провести бесконечное множество параллельных прямых. Лобачевский пытался привести это допущение к противоречию с другими аксиомами Евклида, однако, по мере того как он развертывал из сделанного им допущения все более и более длинную цепь следствий, ему становилось ясным, что никакого противоречия не только не получается, но и не может получиться. Действительно, пусть дана некая прямая и точка, лежащая вне ее. Предположим, что из точки к этой прямой опущен перпендикуляр. В каком же случае прямая, проведенная через конец данного перпендикуляра, будет параллельна данной прямой? Если следовать евклидовой геометрии, это возможно только в том случае, если: а) она лежит в той же плоскости, б) угол между ней и перпендикуляром равен 90°. Предположим теперь, что этот угол не равен 90°, а отличается от него на какую-то величину? В этом случае с точки зрения евклидовой геометрии данные прямые не будут параллельны и должны пересечься. Причем точка пересечения будет тем ближе от перпендикуляра, чем больше? и чем короче его длина. Если же? бесконечно мало (то есть величина ее стремится к нулю), а длина перпендикуляра, наоборот, бесконечно велика, то точка пересечения переместится в бесконечность. Другими словами, бесконечно сближаясь, рассматриваемые нами прямые все же никогда не пересекутся. Очевидно, что таких прямых (каждой из которых соответствует свое значение) через данную точку можно провести сколь угодно много.
Итак, вместо противоречия Лобачевский получил хоть и своеобразную, но логически совершенно стройную и безупречную систему положений, обладающую тем же логическим совершенством, что и обычная евклидова геометрия. Эта система положений и составила так называемую неевклидову геометрию, или геометрию Лобачевского. Как показали позднейшие исследования, геометрия Лобачевского совершенно истинна, если ее рассматривать не на плоскости, а на поверхности гиперболического параболоида (вогнутой поверхности, напоминающей седло). Гиперболический параболоид играет в геометрии Лобачевского ту же роль, что плоскость в геометрии Евклида. (Например, отрезком здесь называется дуга, длина которой определяет кратчайшее расстояние между двумя точками поверхности.)
В каком же соотношении находятся между собой две геометрии и какую из них мы можем считать «более правильной»? Сам Лобачевский совершенно верно утверждал, что различия между его геометрией и геометрией Евклида кроются в понимании самой природы пространства. В евклидовой геометрии пространству отводится роль беспредельной и нейтральной протяженности, вместилища, в которое погружены тела. Однако Лобачевский был уверен, что наше представление о «плоском» пространстве – не более чем дань традиции, никогда не проверявшаяся опытным путем. На самом деле физическое трехмерное пространство искривлено, и лишь в бесконечно малых областях его можно считать плоским, евклидовым. Мерой отличия любого пространства от евклидова является его кривизна. В наших земных пределах этой кривизной можно пренебречь и пользоваться положениями и теоремами евклидовой геометрии. Однако при измерении беспредельных космических расстояний пренебрежение кривизной пространства может привести к серьезным ошибкам.
Свои выводы Лобачевский изложил в 1829 г. в работе «О началах геометрии», которая была опубликована в университетском журнале «Казанский вестник». Затем появились другие работы: «Воображаемая геометрия» (1835) и «Новые начала геометрии с полной теорией параллельных» (1838). В 1837 г. «Воображаемая геометрия» была опубликована в одном из французских научных журналов. В 1840 г. в Берлине на немецком языке вышли его «Геометрические исследования по теории параллельных линий». Эта брошюра вскоре попалась на глаза знаменитому немецкому математику Гауссу и привела его в восторг. Чтобы познакомиться с другими сочинениями Лобачевского, Гаусс даже выучился читать по-русски. Однако остальные математики не обратили на великое открытие Лобачевского никакого внимания. Потребовалось полвека для того, чтобы его идеи вошли в математическую науку, сделались ее неотъемлемой составной частью и явились тем поворотным пунктом, который в значительной мере определил весь стиль математического мышления последующей эпохи.
Георгий Фёдорович Коваленко , Коллектив авторов , Мария Терентьевна Майстровская , Протоиерей Николай Чернокрак , Сергей Николаевич Федунов , Татьяна Леонидовна Астраханцева , Юрий Ростиславович Савельев
Биографии и Мемуары / Прочее / Изобразительное искусство, фотография / Документальное