В XX в. производство полимеров превысило по объему производство стали и цветных металлов. Очень важно сравнивать эти показатели именно по объему, поскольку плотность синтетических полимеров значительно ниже, чем плотность металлов. Самый легкий металл – алюминий, его плотность 2,3 г/см3
, железа – 7,8 г/см3. Плотность большинства полимеров колеблется от 0,9 г/см3 (плотность полипропилена) до 1,4 г/см3 (плотность поливинилхлорида). Следовательно, при равной массе объем полимеров примерно в 5–7 раз больше объема стали.С каждым годом прирост выпуска полимеров постоянно растет, а выпуск металлов фактически стабилизировался.
По сравнению с металлами, у пластмасс есть несколько важных преимуществ:
1) пластмассы намного легче железа. При создании новых самолетов, автомобилей, кораблей, машин и механизмов, бытовых приборов и других конструкций это крайне важно: возрастают грузоподъемность, производительность, мощность, экономится топливо;
2) пластмассы не ржавеют, а из-за коррозии железа и стали почти треть ежегодно добываемого металла идет на замену проржавевшего;
3) трущиеся детали из пластмасс работают гораздо бесшумнее металлических, требуют меньше смазочных материалов или не требуют их вовсе. Это, в конечном итоге, тоже экономит энергию;
4) существует еще одна причина, пожалуй, наиболее важная: практически в любой отрасли промышленности, где для производства различных изделий применяют синтетические полимеры, они обеспечивают рост производительности труда, позволяют снизить энергетические и материальные затраты.
Пластмассы успешно заменяют дерево, натуральные волокна, керамику. Изделия из них легче формовать, производство пластмасс дает меньше отходов, они более долговечны. Помимо того, из-за резкого возрастания населения Земли возникла нехватка натуральных материалов.
Сырье для производства полимеров станет (или уже стало) дефицитным, поэтому нужно научиться его экономить. Ученые уже сейчас работают над этой проблемой в четырех направлениях.
1. Упрочнение материала для уменьшения его расхода. Из более прочного материала можно сделать изделие с более тонкими стенками, более тонкую пленку или волокно. Одно из основных направлений повышения прочности – создание композитов. Не исчерпаны также резервы повышения качества полимеров за счет направленной кристаллизации, ориентации.
В качестве примера можно взять полиэтилен.
Полиэтиленовая пленка легко рвется, ее прочность при растяжении всего 20 МПа. Но специально ориентированные при вытяжке высококристаллические волокна и пленки из полиэтилена могут иметь прочность до 200 МПа.
2. Стабилизация для увеличения срока службы. Полимерам не страшна ржавчина, но им свойственно старение. Под действием ультрафиолетовых лучей, кислорода воздуха, влаги они темнеют, растрескиваются, становятся хрупкими. Со старением полимеров борются, вводя в них различные стабилизаторы – добавки, замедляющие процессы старения. Полиэтиленовая пленка без стабилизаторов служит один сезон, стабилизованная – три сезона. Хотя стоимость стабилизаторов высока.
3. Утилизация отходов. Отходы полиэтиленовой пленки собирают и пускают на вторичную переработку. Вторичный полиэтилен уступает по свойствам «свежему», но находит широкое применение. «Вторичный» капрон получают из чулок и носков.
Изделия из реактопластов нельзя вновь расплавить. Сначала ученые искали способы их разложения химическими или биологическими методами. Но это энергетически не выгодно. Возможный путь – использование размолотых полимеров в виде наполнителей для композитов.
4. Наполнить для того, чтобы разбавить. Во многих случаях в полимерные материалы можно вводить дешевые минеральные наполнители: мел, тальк, глиноземы, песок, цементную пыль, вулканическое стекло, отходы производства волокон и т. п. Многие из этих веществ уже используют для наполнения реактопластов. Когда полимер образует трехмерную сетку, он цепко удерживает частицы наполнителя. Материал при этом приобретает прочность, твердость, расход полимера снижается.
Теперь на очереди наполнение термопластов. Здесь задача посложнее: линейные полимеры слабо взаимодействуют с неорганическими наполнителями, и материалы, содержащие 30–50 % наполнителя, получаются хрупкими. Для решения этой проблемы предложены добавки поверхностно-активных веществ, которые заметно улучшают взаимодействие между полимером и частицами наполнителя. Небольшие (около 1 %) добавки этих веществ позволяют получать наполненные термопласты с хорошими механическими свойствами.