Читаем 100 знаменитых изобретений полностью

Началось бурное развитие радиотехники. Но одновременно с ним выявились недостатки применения вакуумных электронных приборов. Электронная лампа имеет небольшой срок службы. Приняв средний срок службы лампы за 500 часов, при количестве ламп в одном устройстве 2000 штук в среднем каждые 15 минут следовало бы ожидать отказа по крайней мере 1 лампы. Для обнаружения неисправности следовало проверить как минимум несколько сотен ламп. Самой уязвимой частью ламп является нить накала. При включении и выключении прибора нить поочередно раскаляется и охлаждается, что повышает вероятность ее перегорания. Для разогрева лампы требуется мощность в сотые доли ватта. Помноженная на количество ламп потребная мощность достигает нескольких сотен, а иногда тысяч ватт.

Недостатки электронных ламп особенно остро выявились в конце 40-х – начале 50-х гг. прошлого века с появлением первых электронно-вычислительных машин. Их надежность и размеры определялись именно размерами, энергетической емкостью и надежностью используемых в них вакуумных ламп.

Выход из кризиса открыли полупроводниковые приборы, которые, несмотря на свои недостатки, имели явные преимущества по сравнению с лампами: небольшие размеры, мгновенная готовность к работе ввиду отсутствия нити накала, отсутствие хрупких стеклянных баллонов. Эти необходимые в то время свойства побудили к поиску способов устранения недостатков полупроводников.

Исследования проводимости различных материалов начались непосредственно в XIX в. сразу после открытия гальванического тока.

Первоначально их делили на две группы: проводники электрического тока и диэлектрики, или изоляторы. К первым относятся металлы, газы и растворы солей. Их способность проводить ток объясняется тем, что их электроны сравнительно легко отрываются от атома. Особый интерес представляли те из них, которые обладали низким электрическим сопротивлением и могли применяться для передачи тока (медь, алюминий, серебро).

К изоляторам относятся такие вещества, как фарфор, керамика, стекло, резина. Их электроны прочно связаны с атомами.

Позже были открыты материалы, чьи свойства не подходили полностью ни под одну из вышеназванных категорий.

Эти вещества получили название полупроводников, хотя они вполне заслуживали и названия «полуизоляторы». Они проводят ток несколько лучше, чем изоляторы, и значительно хуже проводников.

К полупроводникам относится большая группа веществ, среди которых графит, кремний, бор, цезий, рубидий, галлий, кадмий и различные химические соединения – окислы и сульфиды, большинство минералов и некоторые сплавы металлов. Особенно велико значение германия, а также кремния, благодаря которым произошла поистине техническая революция в электротехнике.

Изучение свойств полупроводников начались, когда возникла потребность в новых источниках электричества. Это заставило исследователей обратиться к изучению явлений, связанных с образованием так называемой контактной разности потенциалов. Было замечено, в частности, что многие материалы, не являющиеся проводниками тока, электризуются при соприкосновении между собой. Первые опыты в этом направлении проводились в XIX в. Г. Дэви и А. С. Беккерелем.

Еще одно направление в исследовании полупроводников появилось в процессе изучения проводимости таких веществ, как минералы, соединения металлов с серой и кислородом, кристаллы, различные диэлектрики и т. п. В этих работах исследовалась величина проводимости и влияние на нее температуры. Исследование в середине XIX в. ряда колчеданов и окислов показало, что с увеличением температуры их проводимость быстро возрастает. Многие кристаллы (горный хрусталь, каменная соль, железный блеск) проявляли анизотропию (неодинаковость свойств внутри тела) по отношению к электропроводности. В 1907 г. Пирс открыл униполярную (одностороннюю) проводимость в кристаллах карборунда: их проводимость в одном направлении оказалась примерно в 4000 раз большей, чем в противоположном.

В ходе этих исследований было также установлено, что существенное влияние на проводимость полупроводников оказывают содержащиеся в них примеси. В 1907–1909 гг. Бедекер заметил, что проводимость йодистой меди и йодистого калия существенно возрастает, примерно в 24 раза, при наличии примеси йода, не являющегося проводником.

Во II половине XIX в. были открыты еще 2 явления, связанные с полупроводниками – фотопроводимость и фотоэффект.

Было обнаружено, что световые лучи влияют на проводимость отдельных веществ, среди которых особое место занимал селен. Влияние света на проводимость селена впервые открыл в 1873 г. Мэй, о чем сообщил В. Смиту, которому иногда приписывают честь этого открытия.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже