Читаем 152626 полностью

Есть другие случаи адаптивных изменений окраски, где механизм адаптации на молекулярном уровне хорошо изучен. Один из таких примеров – скальные щетинистые прыгуны (Chaetodipus intermedius), грызуны, обитающие в пустынях юго-запада США, где участки светлого грунта чередуются с черными лавовыми полями. Как читатели уже догадались, на светлых участках преобладают светлоокрашенные животные, на лавовых полях – темноокрашенные. Показано, что отбор в данном случае осуществляется хищными птицами, в том числе совами, которые лучше видят на темном фоне светлую добычу, а на светлом – темную. Самое интересное, что у обитателей разных лавовых полей отбор зафиксировал разные мутации, приводящие к одному и тому же фенотипическому эффекту – темной шерсти. На одном из лавовых полей все черные грызуны несут мутацию в гене меланокортинового рецептора MC1R (это один из генов, регулирующих синтез черного пигмента эумеланина)[26]. У прыгунов, обитающих на лавовых полях, удаленных на 700 км от первого, черная окраска определяется мутациями в других генах (Majerus, Mundy, 2003

).

Отбору все равно, мутацией какого гена вызвано изменение окраски. Никто не проектирует эволюционное изменение, все происходит само собой. Если возникает мутация, фенотипический эффект которой здесь и сейчас повышает эффективность размножения (приспособленность) ее носителей, то оные носители, эффективно размножаясь, передают мутацию по наследству своим потомкам. А это автоматически ведет к росту частоты встречаемости данной мутации в генофонде. Вот и все. Как видите, можно точно описать дарвиновский эволюционный механизм, не используя слово «отбор» (дабы не вводить читателя лишний раз в искушение, ведь в привычных метафорических формулировках типа «отбор поддерживает» или «отбору все равно» легко усмотреть то, чего там на самом деле нет, – приписывание отбору свойств разумного деятеля, имеющего какие-то цели и планы).

Перед нами классический пример адаптации животных к внезапно изменившимся природным условиям. Чтобы приобрести полезный признак, хомячкам потребовалось изменить всего один ген, а если еще точнее – всего лишь три нуклеотида в нем. И в результате мутации хомячки обрели защитную окраску. Эта мутация, как и в случае с культурным рисом, стала полезной после изменения условий среды и направленности отбора, а до того она была для организмов вредной. В геноме остались следы работы отбора, и мы умеем их находить и анализировать. И мы видим, что все случилось не по взмаху волшебной палочки, а здесь действовал мелочный и постепенный положительный отбор.

Но полезная мутация может быть связана не только с дефектом того или иного потерявшего актуальность гена, как в случае с рисом, или с изменением активности гена на определенной стадии развития организма, как в случае с хомячками. Очень своевременной может стать и замена аминокислоты в активном центре фермента, в результате которой фермент приобретает способность работать с новыми веществами. Следующий пример – как раз из этой серии.

Малярийный плазмодий о пользе точечных мутаций

Начиная с 1960-х годов по всему миру распространились штаммы малярийного плазмодия, устойчивые к хлорохину – лекарству, которое прежде было самым эффективным противомалярийным средством. Хлорохин впервые синтезировали в 1934 году. Благодаря своей эффективности и дешевизне он вскоре стал главным оружием медиков в борьбе с малярией, оттеснив хинин и другие препараты на второй план. Но уже через четверть века, в конце 1950-х годов, почти одновременно в двух точках земного шара – в Колумбии и Таиланде – появились штаммы возбудителя малярии Plasmodium falciparum, устойчивые к хлорохину. В течение последующих 20 лет они распространились из этих двух центров по всем территориям, где встречается малярия.

Генетики установили, что причиной устойчивости являются мутации в одном из генов паразита. Белок, кодируемый этим геном, получил название PfCRT (Plasmodium falciparum Chloroquine Resistance Transporter). Этот белок находится в мембране, окружающей пищеварительную вакуоль паразита – пузырек, в котором происходит переваривание гемоглобина. По аминокислотной последовательности белка PfCRT было ясно, что это мембранный белок, выполняющий транспортную функцию.



Схема распространения штаммов малярийного плазмодия Plasmodium falciparum, устойчивых к хлорохину.




У «нормальных», восприимчивых к хлорохину плазмодиев хлорохин проникает в пищеварительную вакуоль путем диффузии. Внутри вакуоли pH ниже, чем снаружи. Попав в кислую среду, молекула хлорохина присоединяет к себе дополнительный протон и приобретает положительный заряд. Это лишает ее возможности выйти обратно из вакуоли – молекула оказывается в ловушке. В результате хлорохин накапливается в вакуоли, мешая паразиту переваривать гемоглобин.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже