Читаем 4a. Кинетика. Теплота. Звук полностью

Говорят, что Пифагор первый обнаружил тот интересный факт, что одновременное зву­чание двух одинаковых струн различной длины приятнее для слуха, если длины этих струн относятся друг к другу как небольшие целые числа. Если длины струн относятся как 1:2, то это — музыкальная октава; если они относятся как 2:3, то это соответствует интервалу между нотами до и соль и называется квинтой. Эти интервалы считаются «приятно» звучащи­ми аккордами. На Пифагора произвело такое впечатление это открытие, что на его основе он создал школу «пифагорийцев», как их называли, которые мистически верили в вели­кую силу чисел. Они полагали, что нечто по­добное будет открыто и в отношении планет, или «сфер». Иногда можно услышать такое вы­ражение: «музыка сфер». Смысл его в том, что в природе предполагалось существование чис­ловой связи между орбитами планет или между другими вещами. Это считается чем-то вроде суеверия древних греков. Но далеко ли от этого ушел наш сегодняшний научный интерес к количественным соотношениям? Открытие Пифагора, помимо геометрии, было первым примером установления числовых связей в природе. Поистине должно быть было удиви­тельно вдруг неожиданно обнаружить, что в природе есть такие факты, которые описы­ваются простыми числовыми соотношениями. Обычное измерение длин позволяет предска­зать то, что, казалось бы, не имеет никакого отношения к геометрии,— создание «прият­ных» звуков. Это открытие привело к мысли, что арифметика и математический анализ, по-видимому, могут служить хорошим орудием в понимании при­роды. Результаты современной науки полностью подтверждают такую точку зрения.

Пифагор смог сделать свое открытие лишь с помощью экс­периментальных наблюдений. Однако все значение этого от­крытия, по-видимому, не было ему ясно. А случись это, и развитие физики началось бы гораздо раньше. (Впрочем, всегда легко рассуждать о том, что сделал кто-то когда-то и что на его месте следовало бы сделать!)

Можно отметить еще одну, третью сторону этого интерес­ного открытия: оно касается двух нот, которые звучат приятно для слуха. Но далеко ли ушли мы от Пифагора в понимании того, почему только некоторые звуки приятны для слуха? Общая теория эстетики, по-видимому, ненамного продвинулась со времен Пифагора. Итак, одно это открытие греков имеет три аспекта: эксперимент, математические соотношения и эстетику. Физики пока добились успеха только в первых двух. В этой главе мы расскажем о современном понимании открытия Пифагора.

Среди звуков, которые мы слышим, есть такой сорт, кото­рый называется шумом.

Ему соответствуют какие-то нерегу­лярные колебания барабанной перепонки уха, вызванные не­регулярными колебаниями находящихся поблизости объектов. Если начертить диаграмму зависимости давления воздуха на барабанную перепонку (а следовательно, и перемещения ее) от времени, то график, соответствующий шуму, будет выглядеть так, как это изображено на фиг. 50.1,а.


Фиг. 50.1. Давление как функция времени.

а для шума; б — для му­зыкального звука.

(Такой шум может например, вызвать топанье ногой.) А музыкальный звук имеет другой характер. Музыка характеризуется наличием более или менее длительных тонов,

или музыкальных «нот». (Кстати, музыкальные инструменты тоже умеют производить шум!)

Тон может длиться сравнительно недолго, например когда мы ударяем по клавише фортепьяно, или неопределенно дол­го, когда, скажем, флейтист берет длинную ноту.

В чем состоит особенность музыкальной ноты с точки зре­ния давления воздуха? Музыкальный звук отличается от шума тем, что график его периодичен. Форма колебаний давления воздуха со временем пусть даже какая-то неправильная, но она должна повторяться снова и снова. Пример зависимости дав­ления от времени для музыкального звука показан на при­веденной выше фиг. 50.1.б.

Обычно музыканты, говоря о музыкальном тоне, опреде­ляют три его характеристики — громкость, высоту и «каче­ство». «Громкость», как известно, определяется величиной из­менения давления. «Высоте» соответствует период времени повторения основной формы давления («низкие» ноты имеют более длинный период, нежели «высокие»). А под «качеством» тона понимается разница, которую мы способны уловить между двумя нотами одинаковой громкости и высоты. Мы прекрасно различаем звучание гобоя, скрипки или сопрано, даже если высота издаваемых ими звуков кажется одинаковой. Здесь уже дело идет о структуре периодически повторяющейся формы.

Давайте кратко рассмотрим звук, производимый вибри­рующей струной.

Если оттянуть струну, а затем отпустить ее, то последую­щее движение будет определяться волнами, которые мы воз­будили. Эти волны, как вы знаете, пойдут в обоих направле­ниях по струне, а затем отразятся от ее концов. Так они будут бегать взад и вперед довольно долго. И сколь бы сложны ни были эти волны, они будут повторяться периодиче­ски снова и снова.

Перейти на страницу:

Похожие книги

Вечность. В поисках окончательной теории времени
Вечность. В поисках окончательной теории времени

Что такое время в современном понимании и почему оно обладает именно такими свойствами? Почему время всегда двигается в одном направлении? Почему существуют необратимые процессы? Двадцать лет назад Стивен Хокинг пытался объяснить время через теорию Большого Взрыва. Теперь Шон Кэрролл, один из ведущих физиков-теоретиков современности, познакомит вас с восхитительной парадигмой теории стрелы времени, которая охватывает предметы из энтропии квантовой механики к путешествию во времени в теории информации и смысла жизни.Книга «Вечность. В поисках окончательной теории времени» не просто следующий шаг на пути к пониманию почему существует Вселенная — это прекрасное чтения для широкого круга читателей, которые интересуются физикой и устройством нашего мира.

Шон Б. Кэрролл , Шон Майкл Кэрролл

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Образование и наука