Читаем 4a. Кинетика. Теплота. Звук полностью

Для члена с а2 мы получаем cos9wt и cos5wt, каждый из которых при усреднении превратится в нуль. Для члена с а9 получится соз16wt и cos(-2wt). Но cos(-2wt) — это то же са­мое, что cos2wt, так что опять оба члена дадут при усреднении нуль. Ясно, что все слагаемые с косинусами, за исключением одного, дадут при усреднении нуль. Этим единственным сла­гаемым будет член с а7. Для него же мы получим

1/2a7(cos14wt+cos0). (50.7)

Косинус нуля равен единице, а среднее от него, разумеется, тоже равно единице. Итак, мы получили, что среднее от всех членов с косинусами уравнения (50.4) равно 1/2а7.

Еще легче расправиться с синусами. Когда мы умножаем их на косинус типа cos nwt, то таким же методом можно показать, что все они при усреднении обращаются в нуль.


Мы видим, что способ, придуманный Фурье, действует как своеобразное сито. Когда мы умножаем на cos7wt и усредняем, то все члены, кроме а7, отсеиваются и в результате остается


или


Пусть читатель сам докажет, что коэффициенты b7, например, находятся с помощью умножения (50.2) на sin 7wt и усреднения обеих частей. Результат таков:

Но то, что верно для 7, очевидно, верно и для любого дру­гого целого числа. Теперь мы запишем результат нашего дока­зательства в следующей, более элегантной математической форме. Если m и n — целые отличные от нуля числа и если w=2p/T, то


В предыдущих главах для описания простого гармониче­ского движения было удобно пользоваться экспоненциальной функцией. Вместо coswt мы использовали Re ехр(iwt) —дей­ствительную часть экспоненциальной функции. В этой главе мы использовали синус и косинус, потому что с ними, пожа­луй, немного проще проводить доказательства. Однако наш окончательный результат, уравнение (50.13), можно записать в более компактной форме:


где аnкомплексное число аn-ibn(с b0=0). Если мы всюду будем пользоваться одним и тем же обозначением, то должны также написать



Итак, теперь мы умеем раскладывать периодическую волну на ее гармонические компоненты. Эта процедура называется разложением в ряд Фурье, а отдельные члены называются фурье-компонентами. Однако до сих пор мы не показали, что, определив все фурье-компоненты и затем сложив их, мы дейст­вительно придем назад к нашей функции f(t). Математики до­казали, что для широкого класса функций (в сущности, для всех функций, интересных физикам), которые можно проин­тегрировать, мы снова получаем f(t). Но есть одно небольшое исключение. Если функция

f(t) разрывна, т. е. если она неожи­данно прыгает от одного значения к другому, сумма Фурье такой функции даст в точке разрыва значение, лежащее посре­дине между верхним и нижним значениями. Таким образом, если у нас есть странная функция f(t)=0 для 0≤t0и f(t)=1 для t0≤t≤T, то ее сумма Фурье всюду даст нам правильную величину, за исключением точки t0, где вместо единицы полу­чится 1/2. Во всяком случае, физически даже нельзя требовать, чтобы функция была всюду нулем вплоть до точки t0, а в самой точке t0
вдруг стала равной единице. Может быть, стоило бы спе­циально для физиков издать такой «указ», что любая разрывная функция (которая может быть только упрощением настоящей физической функции) в точке разрыва должна принимать сред­нее значение. Тогда любая такая функция, с любым конечным числом «ступенек», как и все другие интересные для физики функции, будет правильно описываться рядом Фурье.


В качестве упражнения предлагаем читателю найти ряд Фурье для функции, показанной на фиг. 50.3.


Фиг. 50.3. Ступенчатая фун­кция. f(t)=+1 для 0

f(t)=-1 для T/2

Поскольку эту функцию нельзя записать в точной алгебраической форме, то брать интеграл от 0 до Т обычным способом невозможно. Однако если разделить его на две части: по интервалу от 0 до T/2 [на котором функция f(t)=1] и по интервалу от T/2 до T [на ко­тором f(t) -1], то интеграл легко берется. В результате должно получиться



где w=2p/T. Таким образом, оказывается, что для нашей сту­пенчатой волны (со специально выбранной фазой) будут только нечетные гармоники, причем их амплитуды обратно пропор­циональны частотам.


Давайте проверим, что для некоторого значения t результат (50.19) действительно дает снова f(t). Возьмем f = T/4или wt=p/2. Тогда


Сумма этого ряда равна p/4, а, стало быть, f(T)=1 .

Перейти на страницу:

Похожие книги

Вечность. В поисках окончательной теории времени
Вечность. В поисках окончательной теории времени

Что такое время в современном понимании и почему оно обладает именно такими свойствами? Почему время всегда двигается в одном направлении? Почему существуют необратимые процессы? Двадцать лет назад Стивен Хокинг пытался объяснить время через теорию Большого Взрыва. Теперь Шон Кэрролл, один из ведущих физиков-теоретиков современности, познакомит вас с восхитительной парадигмой теории стрелы времени, которая охватывает предметы из энтропии квантовой механики к путешествию во времени в теории информации и смысла жизни.Книга «Вечность. В поисках окончательной теории времени» не просто следующий шаг на пути к пониманию почему существует Вселенная — это прекрасное чтения для широкого круга читателей, которые интересуются физикой и устройством нашего мира.

Шон Б. Кэрролл , Шон Майкл Кэрролл

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Физика / Образование и наука