Микросхему DA1 можно поменять на КР1008ВЖ10,11 с любым цифровым индексом в конце обозначения с соответствующей корректировкой печатной платы. Подойдут на тех же условиях импортные аналоги WE9192B, KS5805A, KS5851 и т. п. Транзистор VT1 может быть любым маломощным структуры
Печатная плата выполнена из одностороннего стеклотекстолита. Ее топология приведена на рис. 2.14.
Рис. 2.14
.2.2.6. Кодово-импульсный шифратор
Принцип действия
Основное преимущество кодово-импульсной модуляции перед импульсной заключается в существенно большем числе передаваемых команд при том же количестве импульсов в кодовой посылке. Если в только что рассмотренном шифраторе десятью импульсами можно передать лишь десять разных команд, то при использовании десятипозиционного двоичного кода — 210
= 1024 команды.Такой тип кодирования широко используется в различных системах охранной сигнализации, для которых выпускаются специализированные микросхемы кодеров и декодеров. Часто одна и та же микросхема выполняет обе эти функции и называется кодеком.
Как правило, в них заложена возможность генерации сотен тысяч кодов, но программирование конкретного варианта производится однократно, и оперативная перестройка не предусматривается. Это затрудняет их использование в качестве многоканальных шифраторов, да и такое количество кодов при дистанционном управлении не требуется.
Кроме того, пульты управления моделями не настолько миниатюрны, чтобы отказаться от построения шифраторов на более доступных универсальных цифровых микросхемах. Именно такой вариант исполнения шифратора и рассмотрен ниже.
Принципиальная схема
Принципиальная схема девятиканального шифратора приведена на рис. 2.15.
Рис. 2.15.
Логика функционирования и технические характеристики устройства предполагают его использование совместно с дешифратором, описанным в
Рассмотрим принцип действия шифратора
. Заявленное количество каналов требует использования четырехразрядного двоичного кода. Принцип формирования модифицированной кодовой посылки проиллюстрирован ранее (рис. 1.2). Из рисунка видно, что вначале необходимо сформировать последовательность тактовых импульсов, расстояние между которыми будет определять интервал времени, отводимый на передачу одного разряда двоичного числа.Эта задача решается с помощью тактового генератора, представляющего собой автоколебательный мультивибратор, реализованный на элементах DD3.2, DD3.3. Величина разрядного интервала
Как известно, мультивибратор на логических элементах вырабатывает последовательность прямоугольных импульсов, близкую по форме к меандру. Для формирования узких тактовых импульсов последовательность пропускается через укорачивающее устройство, реализованное на базе дифференцирующей цепи С2, R11 и элемента DD5.1.
Принцип укорачивания импульсов иллюстрирует рис. 2.16, на котором приведены результаты моделирования узла с помощью программы Micro-Cap 8.
Рис. 2.16.
a
— импульсы на выходе мультивибратора (вывод 4 DD3.3); б — импульсы на выходе дифференцирующей цепи (вывод 1 DD5.1); в — выходные импульсы формирователяВеличина, обозначенная как
Двоичное число, представляющее код команды, формируется на выходах А1—А4 шифратора DD1 при нажатии одной из командных кнопок SA1—SA9. Это число подается на входы параллельной записи D1—D4 регистра DD2. Запись числа в регистр производится при наличии высокого потенциала на переключающем входе «Р/S» микросхемы. При подаче на этот вход низкого потенциала производится последовательный вывод разрядов двоичного числа (через выход «Q3» регистра) по передним фронтам тактовых импульсов, подаваемых на вход «С» микросхемы. Для полного вывода числа, очевидно, требуется четыре тактовых импульса.