Читаем 500 схем для радиолюбителей. Дистанционное управление моделями полностью

После подачи питающего напряжения он работает непрерывно. Колебания с его выхода через конденсатор С2 подаются на базу буферного каскада, реализованного на транзисторе VT2. Между эмиттером этого транзистора и корпусом включен электронный ключ на транзисторе VT3, играющий роль манипулятора. В исходном состоянии база ключа соединена с корпусом через резистор R4, что обеспечивает запертое состояние ключа.

Колебания задающего генератора через буферный каскад не проходят. При поступлении положительного импульса на вход манипулятора транзистор VT3 открывается, соединяя эмиттер VT2 с корпусом по постоянному току. Конденсатор С5 блокирует по переменному току небольшое сопротивление участка «коллектор-эмиггер» открытого транзистора ключа. Буферный каскад начинает усиливать входные колебания, передавая их на вход последующих каскадов передатчика.

С целью повышения КПД буферный каскад работает в режиме класса В, для чего его база соединена с корпусом через резистор R3. Транзистор VT2 отпирается только на время положительной полуволны входного напряжения, из-за чего коллекторный ток представляет собой косинусоидальные импульсы. Как известно, в составе их спектра есть гармоники на частоте входного сигнала и на кратных ей частотах. Колебательный контур С6, L2 настраивается либо на первую, либо на вторую, либо на третью гармонику этих колебаний, обеспечивая соответственно просто усиление колебаний задающего генератора, удвоение или утроение их частоты.

Для реализации частотной модуляции используют в основном два способа. В первом случае (рис. 3.10) последовательно с кварцевым резонатором в задающем генераторе включается варикап (полупроводниковый диод, включаемый в обратном направлении, постоянное напряжение на котором способно изменять толщину запирающего слоя, а значит и величину барьерной емкости). Включение емкости последовательно с кварцевым резонатором увеличивает частоту генерации на небольшую величину. Такое явление называется затягиванием частоты кварца; величина затягивания может составлять (3–5)∙10-5 от рабочей частоты кварца. Нетрудно убедиться, что в диапазоне 27 МГц можно получить величину затягивания (девиацию частоты) порядка 10 кГц.



Рис. 3.10.Схема первого варианта частотного манипулятора


Включение последовательно с резонатором катушки индуктивности, наоборот, уменьшает частоту колебаний кварца. Катушка L1 предназначена для компенсации положительного ухода частоты кварцевого резонатора за счет подключения варикапа. Подстроечным сердечником этой катушки устанавливается исходное значение частоты резонатора.

Как правило, варикапы требуют подачи исходного запирающего смещения, величиной которого можно выбирать исходное значение емкости варикапа. Это, в свою очередь, определяет диапазон перестройки емкости под действием командной посылки, а значит и девиацию частоты. Для этой цели служат резисторы R2, R3. Резистор R1 является развязывающим.

Он препятствует подключению параллельно варикапу выходных цепей шифратора, что могло бы ухудшить добротность частотозадающей цепи генератора. Конденсатор С1 препятствует проникновению высокочастотных колебаний из генератора в цепи шифратора.

В рассмотренной схеме положительные входные импульсы вызывают увеличение частоты генерируемых колебаний, т. е. положительную девиацию.


Второй вариант частотного модулятора

Второй вариант частотного модулятора приведен на рис. 3.11. В исходном состоянии транзистор VT1 заперт, так как его база соединена с корпусом через резистор R1.



Рис. 3.11

. Схема второго варианта частотного манипулятора


Последовательно с кварцевым резонатором включена емкость конденсатора С2 небольшой величины (3—15 пФ). Частота кварца в результате смещена вверх. При поступлении положительного импульса на вход, транзистор VT1 открывается и через малое сопротивление участка «коллектор-эмиттер» подключает конденсатор С1 (5—30 пФ) параллельно С2. Увеличение результирующей емкости приводит к снижению частоты генерации в сторону номинального значения. Величину девиации можно регулировать, подстраивая как С1, так и С2. В отличие от предыдущего варианта девиация здесь, в ответ на положительный входной импульс, отрицательна.


3.4.4. Выходные каскады передатчиков


Основные положения

Как уже отмечалось, выходные каскады решают задачу доведения мощности передатчика до требуемого значения и согласованной ее передачи в антенну. При автономном питании передатчика одним из важных параметров является его коэффициент полезного действия, определяемый как

η =

P1/P0 = P1/(P1 + Pк
) (3.1)

где Р1 — номинальная выходная мощность передатчика;

Р0 — мощность, потребляемая от источника питания;

Рк — мощность, рассеиваемая на коллекторе транзистора.

Упрощенная схема выходного каскада в общем случае имеет вид, изображенный на рис. 3.12.



Перейти на страницу:

Все книги серии Радиолюбитель

Похожие книги

PIC-микроконтроллеры. Все, что вам необходимо знать
PIC-микроконтроллеры. Все, что вам необходимо знать

Данная книга представляет собой исчерпывающее руководство по микроконтроллерам семейства PIC компании Microchip, являющегося промышленным стандартом в области встраиваемых цифровых устройств. В книге подробно описывается архитектура и система команд 8-битных микроконтроллеров PIC, на конкретных примерах изучается работа их периферийных модулей.В первой части излагаются основы цифровой схемотехники, математической логики и архитектуры вычислительных систем. Вторая часть посвящена различным аспектам программирования PIC-микроконтроллеров среднего уровня: описывается набор команд, рассматривается написание программ на ассемблере и языке высокого уровня (Си), а также поддержка подпрограмм и прерываний. В третьей части изучаются аппаратные аспекты взаимодействия микроконтроллера с окружающим миром и обработки прерываний. Рассматриваются такие вопросы, как параллельный и последовательный ввод/вывод данных, временные соотношения, обработка аналоговых сигналов и использование EEPROM. В заключение приводится пример разработки реального устройства. На этом примере также демонстрируются простейшие методики отладки и тестирования, применяемые при разработке реальных устройств.Книга рассчитана на самый широкий круг читателей — от любителей до инженеров, при этом для понимания содержащегося в ней материала вовсе не требуется каких-то специальных знаний в области программирования, электроники или цифровой схемотехники. Эта книга будет также полезна студентам, обучающимся по специальностям «Радиоэлектроника» и «Вычислительная техника», которые смогут использовать ее в качестве учебного пособия при прослушивании соответствующих курсов или выполнении курсовых проектов.

Сид Катцен

Радиоэлектроника
Электроника для начинающих
Электроника для начинающих

В ходе практических экспериментов рассмотрены основы электроники и показано, как проектировать, отлаживать и изготавливать электронные устройства в домашних условиях. Материал излагается последовательно от простого к сложному, начиная с простых опытов с электрическим током и заканчивая созданием сложных устройств с использованием транзисторов и микроконтроллеров. Описаны основные законы электроники, а также принципы функционирования различных электронных компонентов. Показано, как изготовить охранную сигнализацию для защиты от проникновения в дом, елочные огни, электронные украшения для одежды, устройство преобразования звука, кодовый замок, автономную роботизированную тележку и др. Приведены пошаговые инструкции и более 500 наглядных рисунков и фотографий.Для начинающих радиолюбителей

Паоло Аливерти , Чарльз Платт

Радиоэлектроника / Технические науки