Читаем Абсолютный минимум. Как квантовая теория объясняет наш мир полностью

Рис. 9.2. Видимая часть солнечного спектра. Непрерывная последовательность цветов — это чернотельный спектр. Тёмные линии, или полосы, — это цвета, соответствующие длинам волн, которые не доходят до Земли, так что они выглядят отсутствующими цветами в солнечном спектре. Длины волн этих линий отложены на шкале вдоль спектра в нанометрах (1 нм = 10-9 м)

Спектральные линии водорода

Первая попытка объяснить линейчатый спектр водорода в видимом диапазоне была предпринята в 1885 году школьным учителем и математиком Иоганном Бальмером (1825–1898). Бальмер заметил, что частоты f этих линий в видимой части спектра можно описать формулой

f~(1/22)-(1/n2).

Символ ~ означает пропорциональность, то есть указывает на наличие постоянного множителя, о котором говорится ниже. В этом уравнении n — целое число больше 2, то есть 3, 4, 5 и т. д.

Эти линии в видимой части спектра называются бальмеровской серией. Позднее были открыты линии в ультрафиолетовой и инфракрасной частях спектра. Их назвали сериями Лаймана и Пашена соответственно в честь их первооткрывателей — американского физика и спектроскописта Теодора Лаймана (1874–1954) и немецкого физика Луиса Карла Генриха Фридриха Пашена (1865–1947). В 1888 году шведский физик и спектроскопист Йоханнес Ридберг (1854–1919) опубликовал формулу, которая описывала все спектральные линии, видимые в излучении водородной дуговой лампы и в спектрах поглощения солнечного и звёздного света. Формула Ридберга для частоты спектральных линий водорода имеет вид

f=RH•[(1/n

12)-(1/n22)],

где n1 — целые числа, начиная с 1, а n2 — другие целые числа, которые должны быть больше n1. Значение n1=1 даёт лаймановскую серию, n1

=2 — бальмеровскую, n1=3 — серию Пашена.

Константа RH называется постоянной Ридберга для атома водорода. Её значение составляет RH=109677,6 см-1 и выражено числом волн (см-1). При использовании этого значения в формуле Ридберга частоты спектральных линий, определяемые целыми числами n1 и n2, выражаются волновыми числами. Для перевода результата в герцы надо умножить полученное значение на скорость света, то есть на 3•1010

 см/сек. Чтобы найти длину волны спектральной линии, надо взять величину, обратную частоте, выраженной числом волн, то есть разделить единицу на частоту, выраженную числом волн. Например, если n
1=2, а n
2=3, то

f=RH•[(1/22)-(1/32)] = RH•[(1/4)-(1/9)] = 1,52•104 см

-1

представляет собой частоту, выраженную числом волн. Обратная величина для этого числа составляет 6,56•10-5 см = 656•10-9 м = = 656 нм. Таким образом, длина волны составляет 656 нм — это красная линия в серии Бальмера, изображённой на рис. 9.2.

При обсуждении рис. 8.7 уже говорилось о дискретности оптических переходов между квантовыми энергетическими уровнями для частицы в ящике. На рис. 8.7 показаны переходы между состояниями частицы в ящике, при которых n=1 превращается в n=2 и n=1 превращается в n=3. В связи с этим не должен стать большим сюрпризом тот факт, что оптические переходы в атоме водорода могут соответствовать дискретному набору частот, которые зависят от целых чисел. Однако в 1888 году, когда была получена формула Ридберга, оставалось ещё 12 лет до появления идеи квантования энергетических уровней, с помощью которой Планк объяснил чернотельное излучение, и 37 лет до того, как в 1925 году сформировалась полноценная квантовая теория. Различные серии спектральных линий, энергии которых связаны посредством целых чисел по формуле Ридберга, можно понять как оптические переходы между дискретными энергетическими уровнями, связанные с атомом водорода.

Рис. 9.3.Схемы некоторых энергетических уровней, порождающих серии Лаймана и Бальмера линий эмиссии водорода. Стрелки, направленные вниз, показывают, как свет испускается водородом, например, в дуговой лампе. При поглощении, дающем тёмные линии на рис. 9.2, стрелки были бы направлены вверх. Интервалы между уровнями показаны условно, а не в масштабе


Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже