Читаем Абсолютный минимум. Как квантовая теория объясняет наш мир полностью

Как мы увидим далее, водород может образовывать другие молекулы, но поскольку ему требуется лишь один электрон, чтобы получить заполненную электронную оболочку, как у гелия, он может образовывать одну химическую связь. Гелий имеет замкнутую оболочку. Он не способен образовывать какие-либо химические связи. Не существует молекул, в которые входил бы атом гелия. Почему именно так происходит, описывается в главе 12. Гелий замыкает первый период.

Следующий элемент — это литий (Li), который располагается в Периодической таблице непосредственно под H. Li может получить заполненную конфигурацию оболочки, как у гелия, отдав электрон. Поэтому Li образует положительные ионы Li1+. В твёрдом виде Li является металлом. Металлы способны проводить электричество, а значит, электроны могут свободно перемещаться от одного атома к другому. Природа металлов и электропроводности будет обсуждаться в главе 19. Металлы отличаются тем свойством, что, будучи одиночными атомами, они легко могут отдать один или несколько электронов. Электрон, отданный литием, должен куда-то деться. Он перейдёт к другому атому, которому нужно получить электрон, чтобы образовать отрицательный ион. Таким образом, для образования иона Li1+ литию нужен партнёр (см. обсуждение ниже, где мы добираемся до другой стороны Периодической таблицы).

Следующий элемент — это бериллий. Бериллий будет отдавать два электрона, чтобы вернуться к конфигурации гелия с замкнутой электронной оболочкой. Поэтому бериллий будет образовывать ионы с зарядом +2 (Be2+). Поскольку бериллий легко отдаёт электроны, твёрдый бериллий является металлом. Следующий элемент — это бор. Он может отдать электроны, чтобы вернуться к конфигурации гелия с замкнутой оболочкой. Поэтому он образует ионы с зарядом +3 и является металлом.

Дальше всё изменяется. Следующий элемент — это углерод. Ему понадобилось бы отдать четыре электрона, чтобы вернуться к конфигурации гелия, но он также мог бы присоединить четыре электрона, чтобы перейти к следующей замкнутой конфигурации оболочки, такой как у неона. Как показано на рис. 11.5, атом Ne обладает второй по счёту замкнутой электронной оболочкой. У него два электрона находятся на 1s-орбитали, а затем оболочка с n=2 заполнена двумя электронами на 2s

-орбиталях и шестью электронами на трёх 2p-орбиталях. Вместо того чтобы отдавать так много электронов, возвращаясь к конфигурации гелия, атом C может двинуться вперёд — к конфигурации неона, присоединив четыре электрона путём создания четырёх ковалентных связей.

Например, метан (природный газ) имеет молекулу CH4, в которой каждый атом H связан с центральным атомом C. Углерод совместно использует четыре электрона, по одному от каждого атома водорода, и тем самым получает замкнутую электронную конфигурацию неона. Каждый атом H использует один электрон совместно с атомом C, получая тем самым дополнительный электрон для формирования замкнутой конфигурации электронной оболочки, как у гелия. Это очень важно. За счёт ковалентных связей (совместного использования электронов) каждый атом получает замкнутую конфигурацию оболочки. Другой чрезвычайно важный факт состоит в том, что атом С всегда создаёт четыре связи, поскольку нуждается в совместном использовании четырёх электронов для достижения конфигурации неона. Этот факт играет фундаментальную роль для органической химии и биохимии, что подробно обсуждается в последующих главах.

Следующий элемент — азот. Атом N нуждается в трёх электронах, чтобы достичь конфигурации неона, поэтому он образует три ковалентные связи. Например, он может соединяться с атомами H, образуя молекулу NH3 — аммиак. Кислороду нужно два электрона, чтобы получить замкнутую конфигурацию оболочки неона, так что он образует две связи и, например, участвует в образовании молекулы воды (H

2O). Таким образом, из этих простых соображений уже становится понятна последовательность соединений: CH4, NH3 и H2
O. Связи, образуемые с участием атомов C, N и O, будут обсуждаться в следующих главах, где идёт речь о молекулах, содержащих эти атомы, но они всегда образуют 4, 3 и 2 связи соответственно.

Следующий элемент — это фтор. Атом фтора лишь на один электрон отстаёт от замкнутой оболочки атома Ne. Он имеет столь сильное сродство к электрону, что склонен образовывать отрицательный ион F1-, захватывая «лишний» электрон. Этот электрон должен откуда-то появиться, и атом F образует соединения, которые в общем случае называются солями. Например, соединение LiF имеет вид белых кристаллов. В этих кристаллах Li, которому нужно отдать электрон, чтобы достичь конфигурации гелия, передаёт электрон атому F. В результате кристалл LiF состоит из ионов Li1+ и ионов F1-. Ионы Li1+ обладают замкнутой оболочкой, как у атома He, а ионы F1- имеют замкнутую оболочку, как у атома Ne.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже