На рис. 12.9 представлена диаграмма энергетических уровней МО для этих четырёх молекул. Атомные энергетические уровни опущены. Молекулярный ион H2
+ имеет только один электрон, так что он занимает самый нижний энергетический уровень — связывающую МО. Энергия получается ниже, чем у разделённых атомов, но лишь на величину, примерно вдвое меньшую, чем у молекулы H2, которая имеет два электрона на связывающей МО. Молекула H2 обладает полной ковалентной связью. Говорят, что она имеет порядок связи, равный 1. Молекулярный ион H2+ имеет порядок связи, равный 1/2 .Рис. 12.9.
Молекулярный ион He2
+ имеет три электрона. Первые два из них находятся на связывающей МО, но в силу принципа Паули третий электрон должен размещаться на разрыхляющей МО. Два электрона понижают энергию относительно раздельных атомов, но третий электрон повышает эту энергию. В целом имеет место уменьшение энергии. Молекулярный ион He2+ существует в природе и имеет порядок связи, равный 1/2 . Как уже говорилось, молекула He2 имеет два связывающих электрона и два разрыхляющих электрона. Связь не возникает, то есть порядок связи равен нулю. Молекулы He2 не существует.В табл. 12.1 содержится количественная информация об этих четырёх молекулах. В ней приводятся число связывающих электронов, число разрыхляющих электронов и итоговый результат, равный разности числа связывающих электронов и числа разрыхляющих. В таблице также приводится порядок связи. Последние две колонки особенно интересны.
Таблица 12.1.
Связ. электроны, Разр. электроны, Разность, Порядок связи, Длина связи, Энергия связи
H2
: 2; 0; 2; 1; 0,74A; 7,2•10-19H2
+: 1; 0; 1; 1/2 ; 1,06A; 4,2•10-19He2
+: 2; 1; 1; 1/2 ; 1,08A; 5,4•10-19He2
: 2; 2; 0; 0; Нет; НетДанные, приведённые в табл. 12.1, — это результаты экспериментальных измерений. Прежде всего, остановимся на длине химической связи. Она выражена в ангстремах (1 A = 10-10
В этой главе мы воспользовались представлениями о молекулярных орбиталях для рассмотрения простейших молекул. Обсуждение касалось только атомов, содержащих 1
13. Что удерживает атомы вместе: двухатомные молекулы
Молекула водорода является двухатомной, то есть состоит лишь из двух атомов. В процессе изучения водорода мы обнаружили, что атомы могут объединять свои атомные орбитали, образуя молекулярные орбитали. Нам предстоит расширить обсуждение молекулярных орбиталей, с тем чтобы понять, как из атомов образуются более сложные молекулы. Начнём мы с рассмотрения других двухатомных молекул на примере N2
, O2, F2 и HF. Молекулы N2, O2 и F2 (азот, кислород и фтор) называются гомонуклеарными, поскольку состоят из одинаковых атомов. Молекула HF (фтороводород) — гетеронуклеарная, поскольку два её атома различны. Анализ гомонуклеарных двухатомных молекул выведет нас за рамки того, что мы узнали о молекуле водорода, которая является частным случаем. Изучение природы молекулярных орбиталей в гетеронуклеарных двухатомных молекулах — это важный шаг вперёд к пониманию многоатомных молекул, из которых состоит большинство окружающих нас молекулярных веществ — от спирта до жиров.