Читаем Агрохимия полностью

Согласно первому механизму (А) мембрана втягивается внутрь клетки, образуя узкий канал. От конца канала отшнуровываются маленькие пузырьки с захваченным веществом. По второму механизму (Б—Ж) участок мембраны, на котором адсорбировались микромолекулы (В), впячивается внутрь (Г). В месте впячивания края мембраны смыкаются (Д) и образовавшийся пиноцитарный пузырек отрывается от клеточной мембраны (Е). В глубине клетки мембраны пузырька разрушаются ферментами (Ж) (рис. 16).

В клетке мембранная оболочка пузырька разрушается ферментом и захваченные частицы попадают в цитоплазму. Процесс об-

Рис. 16. Два возможных механизма пиноцитоза (пояснения в тексте):А
— первый механизм; Б—Ж— второй механизм

разования пузырька и отрыв его от наружной мембраны требуют затраты энергии, которая подается в виде АТФ.

Пиноцитарный пузырек разрушается в результате слияния его с лизосомой, содержащей набор гидролитических ферментов, которые расщепляют макромолекулы.

Имеются сведения, что явление пиноцитоза вызывается в определенных участках мембраны соответствующими веществами, адсорбированными на ее поверхности. Есть данные о наличии обратного пиноцитоза — процесса, позволяющего клеткам вывести некоторые вредные вещества наружу, не выпуская в то же время другие молекулы, свободно плавающие в цитоплазме.

В заключение следует отметить, что молекулы или ионы, поступающие в клетку из наружного раствора независимо от способа переноса их через плазмалемму, практически не включаются в реакции обмена веществ на уровне плазмалеммы, и после поступления во внутреннее пространство клетки могут иметь следующий путь: 1) пройдя цикл метаболических превращений, поступившие в клетку вещества оказываются в составе органических соединений структурных элементов клетки; 2) избыточные ионы концентрируются в вакуолях клеток корня, создавая запас ионов, или передаются по сосудам ксилемы в надземные части растений; 3) ионы могут быть вновь выведены из организма в окружающую среду.

2.4.2. ФОРМЫ СОЕДИНЕНИЙ, В КОТОРЫХ РАСТЕНИЯ ПОГЛОЩАЮТ ЭЛЕМЕНТЫ ПИТАНИЯ

В результате непрерывных биологических, физических, химических и физико-химических процессов в почве сложные минеральные или органические вещества распадаются на простые. Образующиеся продукты распада постоянно используются для питания растений, хотя некоторая часть их может теряться в газообразной форме или вымываться в расположенные ниже горизонты или в близлежащие водоемы, а также необменно закрепляться почвой. Основное количество элементов питания растения усваивают в ионной форме (в виде анионов и катионов) через корневую систему. Кроме того, для питания растений в незначительных количествах могут использоваться аминокислоты, сахара, сахарофосфаты и другие органические соединения.

Аминокислоты, поступив в растения, подвергаются дезаминированию, и освободившийся аммиак используется в синтетических процессах. Однако в основном азот поглощается в виде аниона нитрата NO3 и катиона аммония NH^. Эти ионы постоянно образуются в почве из органических веществ в результате процессов аммонификации и нитрификации, осуществляемых микроорганизмами.

Азот, поступивший в растения в нитратной форме, в результате деятельности группы ферментов подвергается восстановлению до аммиака.

В аммиачной форме азот используется растениями в результате реакции замещения кислородного атома карбонила кетокислоты с образованием соответствующей аминокислоты:

R—С—СООН —- R—СН—СООН.

Кетокислота Аминокислота

В общем бюджете форм связанного азота, активно используемого в процессе круговорота данного элемента в природе, исключительно важное значение имеет фиксация молекулярного азота.

Связывание молекулярного азота атмосферы осуществляется рядом почвенных микроорганизмов и многими растениями в симбиозе с микроорганизмами.

Процесс связывания азота носит многоступенчатый характер. Важные функции в осуществлении отдельных звеньев процесса выполняют фермент нитрогеназа, леггемоглобин, соединения группы витамина В,2

, металлы (железо, молибден, кобальт, медь и др.)

Азот и сера входят в состав белков и многих других соединений. Сера усваивается растениями в виде аниона серной кислоты

SC>4_. В растениях сульфат последовательно восстанавливается до

сульфита и сульфида (S2-), который, присоединяя водо

род, образует сульфгидрильные группы (S—Н). Теряя атомы водорода, две сульфгидрильные группы образуют дисульфидную (—S—S—) группу. Сера входит в ацетилкоэнзим А (участвующий в синтезе липидов), в аминокислоты (цистеин, цистин и метионин) и другие соединения, имеющие важное биологическое значение.

Фосфор усваивается растениями в виде аниона фосфорной

Перейти на страницу:

Похожие книги

Запутанная жизнь. Как грибы меняют мир, наше сознание и наше будущее
Запутанная жизнь. Как грибы меняют мир, наше сознание и наше будущее

Под словом «гриб» мы обыкновенно имеем в виду плодовое тело гриба, хотя оно по сути то же, что яблоко на дереве. Большинство грибов живут тайной – подземной – жизнью, и они составляют «разношерстную» группу организмов, которая поддерживает почти все прочие живые системы. Это ключ к пониманию планеты, на которой мы живем, а также наших чувств, мыслей и поведения.Талантливый молодой биолог Мерлин Шелдрейк переворачивает мир с ног на голову: он приглашает читателя взглянуть на него с позиции дрожжей, псилоцибиновых грибов, грибов-паразитов и паутины мицелия, которая простирается на многие километры под поверхностью земли (что делает грибы самыми большими живыми организмами на планете). Открывающаяся грибная сущность заставляет пересмотреть наши взгляды на индивидуальность и разум, ведь грибы, как выясняется, – повелители метаболизма, создатели почв и ключевые игроки во множестве естественных процессов. Они способны изменять наше сознание, врачевать тела и даже обратить нависшую над нами экологическую катастрофу. Эти организмы переворачивают наше понимание самой жизни на Земле.В формате PDF A4 сохранен издательский макет.

Мерлин Шелдрейк

Ботаника / Зарубежная образовательная литература / Образование и наука
100 великих тайн из жизни растений
100 великих тайн из жизни растений

Ученые считают, что растения наделены чувствами, интеллектом, обладают памятью, чувством времени, могут различать цвета и общаться между собой или предостерегать друг друга. Они умеют распознавать угрозу, дрожат от страха, могут звать на помощь; способны взаимодействовать друг с другом и другими живыми существами на расстоянии; различают настроение и намерения людей; излучение, испускаемое ими, может быть зафиксировано датчиками. Они не могут убежать в случае опасности. Им приходится быть внимательнее и следить за тем, что происходит вокруг них. Растения, как оказывается, реагируют на людей, на шум и другие явления, а вот каким образом — это остается загадкой. Никому еще не удалось приблизиться к ее разгадке.Об этом и многом другом рассказывает очередная книга серии.

Николай Николаевич Непомнящий

Ботаника / Научно-популярная литература / Образование и наука