Читаем Алекс в стране чисел. Необычайное путешествие в волшебный мир математики полностью

Некоторые из прибывших атакуют стойку регистрации, пытаясь выяснить, может ли гостиница их принять. Все, что для этого надо сделать администратору, — это найти способ составить список, в котором присутствовало бы каждое десятичное число между 0 и 1, поскольку, как только такой список будет составлен, расселение не составит труда. Задача не кажется нерешаемой — ведь, в конце концов, наш находчивый администратор однажды уже придумал, как организовать в список всех пассажиров из бесконечного числа автобусов, в каждом из которых было бесконечно много пассажиров. И тем не менее эта новая задача оказывается нерешаемой! Нет способа пересчитать все десятичные разложения между 0 и 1 таким образом, чтобы стало возможным внести все их в упорядоченный список. Дабы продемонстрировать это, я покажу, что для каждого бесконечного списка чисел, лежащих между 0 и 1, всегда найдется число между 0 и 1, которого в этом списке нет.

Вот как это делается. Вообразим себе, что первый из прибывших одет в футболку с разложением 0,6429657, второй — 0,0196012 и администратор отводит им номера 1 и 2. И пусть он так и продолжает назначать номера следующим, кто прибывает, в результате у него получается бесконечный список, начало которого выглядит следующим образом (не будем забывать еще, что разложения продолжаются до бесконечности):

Номер 10,6429657…
Номер 20,0196012…
Номер 30,9981562…
Номер 40,7642178…
Номер 50,6097856…
Номер 60,5273611…
Номер 70,3002981…
Номер…0….

Наша цель, как было сказано, состоит в том, чтобы предъявить десятичное разложение, лежащее между 0 и 1, которого нет в этом списке. Мы этого добьемся, используя следующий метод. Сначала построим число, первая десятичная цифра которого совпадает с первой десятичной цифрой из номера 1, вторая десятичная цифра — со второй из номера 2, третья — с третьей из номера 3 и т. д. Другими словами, мы выберем цифры, стоящие на диагонали. Для удобства мы их подчеркнем:

Номер 10,6429657…
Номер 20,0196012…
Номер 30,9981562…
Номер 40,7642178…
Номер 50,6097356…
Номер 60,5273611…
Номер 70,3002981…
Номер…0….

Полученное число такое: 0,6182811….


Мы почти у цели. Теперь, в качестве последнего действия, построим число, которого нет в списке администратора: изменим каждую цифру в только что полученном числе, прибавляя 1 к каждой цифре, так что 6 станет 7, 1 станет 2, 8 станет 9 и т. д.; в результате получится число

0,7293922….

Это оно и есть! Это то самое десятичное разложение, не включенное в список, которое мы искали. Оно не может быть в списке администратора, потому что мы искусственно построили его таким, чтобы оно там не содержалось. Это не число из номера 1, потому что его первая цифра отлична от первой цифры числа из номера 1. Наше число — не из номера 2, потому что его вторая цифра отлична от второй цифры числа из номера 2, и т. д. — откуда видно, что наше число не может относиться ни к какому номеру n, потому что его n-я цифра непременно отлична от n-й цифры в разложении из номера n. Поэтому наше хитрое разложение 0,7293922… не может быть равным никакому из разложений, написанных на футболках путешественников, расселенных по номерам отеля, ведь всегда по крайней мере одна цифра из этого десятичного разложения будет отличаться от десятичного разложения, приписанного данному номеру. В списке вполне может оказаться число, первые семь десятичных цифр которого равны 0,7293922, и, однако же, оно будет отличаться от нашего специального числа по крайней мере одной цифрой где-то дальше в разложении. Другими словами, даже если администратор все дальше и дальше будет продолжать раздавать номера, он не сможет найти номер для путешественника, на котором надета футболка с придуманным нами числом, которое начинается как 0,7293922….

Я взял список, начинающийся с произвольных чисел 0,6429657… и 0,0196012…, но равным образом я мог бы рассмотреть список, начинающийся с любых других чисел. Для каждого списка, который можно создать, всегда удастся выписать, используя предложенный выше «диагональный» метод, такое число, которое в данном списке не присутствует. Пусть в Гильбертовом отеле бесконечное число номеров, но в нем нельзя расселить такое бесконечное число людей, которое определяется десятичными разложениями всех чисел между 0 и 1. Всегда кто-то останется на улице. Отель для этого просто недостаточно вместительный[72].

* * *

Перейти на страницу:

Все книги серии Galileo

Похожие книги

1991. Хроника войны в Персидском заливе
1991. Хроника войны в Персидском заливе

Книга американского военного историка Ричарда С. Лаури посвящена операции «Буря в пустыне», которую международная военная коалиция блестяще провела против войск Саддама Хусейна в январе – феврале 1991 г. Этот конфликт стал первой большой войной современности, а ее планирование и проведение по сей день является своего рода эталоном масштабных боевых действий эпохи профессиональных западных армий и новейших военных технологий. Опираясь на многочисленные источники, включая рассказы участников событий, автор подробно и вместе с тем живо описывает боевые действия сторон, причем особое внимание он уделяет наземной фазе войны – наступлению коалиционных войск, приведшему к изгнанию иракских оккупантов из Кувейта и поражению армии Саддама Хусейна.Работа Лаури будет интересна не только специалистам, профессионально изучающим историю «Первой войны в Заливе», но и всем любителям, интересующимся вооруженными конфликтами нашего времени.

Ричард С. Лаури

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / История / Прочая справочная литература / Военная документалистика / Прочая документальная литература
1001 вопрос об океане и 1001 ответ
1001 вопрос об океане и 1001 ответ

Как образуются атоллы? Может ли искусственный спутник Земли помочь рыбакам? Что такое «ледяной плуг»? Как дельфины сражаются с акулами? Где находится «кладбище Атлантики»? Почему у берегов Перу много рыбы? Чем грозит загрязнение океана? Ответы на эти и многие другие вопросы можно найти в новой научно-популярной книге известных американских океанографов, имена которых знакомы нашему читателю по небольшой книжке «100 вопросов об океане», выпущенной в русском переводе Гидрометеоиздатом в 1972 г. Авторы вновь вернулись к своей первоначальной задаче — дать информацию о различных аспектах современной науки об океане, — но уже на гораздо более широкой основе.Рассчитана на широкий круг читателей.

Гарольд В. Дубах , Роберт В. Табер

Геология и география / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Научпоп / Образование и наука / Документальное
Эволюция и прогресс
Эволюция и прогресс

Автор вводит читателя в круг наиболее интригующих вопросов эволюционной биологии. До сих пор эволюционный прогресс остается предметом бурных, даже ожесточенных споров. По существу, всех биологов можно разделить на сторонников и противников идеи этой формы прогресса. Эволюцию живых организмов обычно связывают с ростом их сложности и степени совершенства, однако до сих пор нет строгих критериев этой оценки. Главная мысль, развиваемая автором, состоит в том, что основные атрибуты прогресса — усложнение строения и повышение уровня надклеточной организации — являются лишь следствием постоянно идущего отбора на повышение эволюционной пластичности видов.Книга предназначена для биологов широкого профиля, а также всех интересующихся вопросами эволюции живых существ.

Владимир Александрович Бердников

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Биология / Научпоп / Образование и наука / Документальное