Читаем Алгоритм изобретения полностью

В начале XX века нидерландский астроном Герцшпрунг и американский астрофизик Рассел построили диаграмму «Спектр — светимость». На одной оси этой диаграммы указаны спектральные классы, а на другой — светимость звезд. Оказалось, что каждому спектральному классу звезд соответствует определенная светимость. В бесчисленное множество звезд сразу был внесен порядок — звезды разместились на диаграмме по одной линии («главная последовательность»). Более того, упорядочилось и представление о развитии звезд: с увеличением возраста меняется спектр звезды; звезда перемещается на диаграмме вдоль линии «главной последовательности».

Диаграмма Герцшпрунга — Рассела оказала огромное влияние на астрономическое мышление (как таблица Менделеева — на мышление химиков). В последующие годы она уточнялась, развивалась, были найдены новые линии для звезд-гигантов, звезд-карликов и т. д., были построены новые двухмерные и трехмерные диаграммы.

В 1939 году Ф. Цвикки, анализируя белые пятна на диаграмме «Масса — светимость», сделал выдающееся открытие — теоретически доказал существование нейтронных звезд. Три года спустя, когда Цвикки привлекли к ракетным разработкам, он перенес метод построения многомерных диаграмм в технику, назвав его морфологическим методом.

Сущность этого метода заключается в построении многомерных таблиц (морфологических ящиков), в которых осями берутся основные показатели данной совокупности объектов. Предположим, надо найти оптимальную конструкцию ранцевого устройства для передвижения пловца-подводннка. Мы можем начать перебирать различные «а если сделать так?». Например: а если использовать электромотор и аккумуляторы? Или: а если использовать энергию сжатого воздуха и турбинку? Или: а если использовать энергию сжатого воздуха, но не с турбинкой, а с плавником типа «рыбий хвост»?..

При морфологическом методе — до выбора — нужно построить многомерную таблицу, на одной оси которой надо отложить (в данном случае) вид используемой энергии (электрическая, механическая, химическая и т. д.), на другой оси — разные типы двигателей (электромоторы, турбины, ракетные двигатели различных систем), на третьей — типы возможных движителей (винт, плавник, ракета и т. д.). Такой ящик охватит почти все мыслимые комбинации.

Конечно, ящик будет тем полнее, чем больше осей в нем и чем длиннее эти оси. Так, ящик, составленный Цвикки для прогнозирования одного только типа ракетных двигателей, имел — при 11 осях — 36864 комбинации!..

В этом, собственно, и заключается один из основных недостатков морфологического метода. При решении изобретательской задачи даже средней трудности в ящике могут оказаться сотни тысяч и миллионы вариантов.

Другой недостаток метода — отсутствие уверенности в том, что при построении ящика учтены все оси и все классы вдоль этих осей. Интуитивный поиск вариантов заменяется интуитивным же поиском осей и классов. Выигрыш в том, что мы переходим от перебора мелких (и потому легко теряющихся) единиц (вариантов) к подбору крупных единиц (оси, классы по осям). Проигрыш в том, что, упустив хотя бы одну ось, мы автоматически теряем очень большую группу вариантов. А с осями, как с вариантами, самые тривиальные лезут в глаза, а самые интересные прячутся за психологическими барьерами. И все-таки морфологический метод — большой шаг вперед по сравнению с обычным перебором вариантов.

Наиболее эффективно применение этого метода при решении конструкторских задач общего плана (проектирование новых машин, поиск новых компоновочных решений). Возьмем, для примера, проектирование снегоходов. Можно построить морфологический ящик со следующими осями и классами по осям[14].

1. Двигатель:

внутреннего сгорания;

газовая турбина;

электрический;

турбореактивный;

парусный (для снегоходов это не лишено смысла).

2. Движитель:

моноколесо (кабина внутри колеса);

обычные колеса;

ребристые колеса;

овальные колеса;

квадратные колеса;

цилиндрические пневмокатки;

гусеницы;

снежные винты;

лыжи и вибролыжи;

воздушный винт;

воздушная подушка;

ноги (шагающий движитель);

спиральный движитель;

рессорно-листовой движитель;

импульсно-фрикционный движитель;

снегометный движитель;

вращающиеся тарелки и еще не менее 15 комбинированных движителей.

3. Опора кабины:

на движитель (например, на лыжи);

непосредственно на снег.

4. Тип кабины:

открытая;

закрытая однокорпусная;

катамаран;

сдвоенная тандемного типа.

5. Обеспечение амортизации:

за счет движителя;

за счет специальных амортизаторов;

без амортизации.

6. Управление:

изменение направления двигателя;

изменение направления движителя;

снежные рули;

воздушные рули.

7. Обеспечение заднего хода:

реверс двигателя;

реверс движителя;

без реверса (разворотом).

8. Торможение:

основным двигателем;

вспомогательным двигателем;

воздушными тормозами;

снежными тормозами.

9. Предохранение от примерзания на стоянке:

механическое;

механическое с помощью двигателя;

электрическое;

химическое;

тепловое;

без предохранения.

Мы охватили далеко не все возможные оси и не все классы по осям. Тем не менее в ящике уже более миллиона вариантов.

Перейти на страницу:

Похожие книги

Теория струн и скрытые измерения Вселенной
Теория струн и скрытые измерения Вселенной

Революционная теория струн утверждает, что мы живем в десятимерной Вселенной, но только четыре из этих измерений доступны человеческому восприятию. Если верить современным ученым, остальные шесть измерений свернуты в удивительную структуру, известную как многообразие Калаби-Яу. Легендарный математик Шинтан Яу, один из первооткрывателей этих поразительных пространств, утверждает, что геометрия не только является основой теории струн, но и лежит в самой природе нашей Вселенной.Читая эту книгу, вы вместе с авторами повторите захватывающий путь научного открытия: от безумной идеи до завершенной теории. Вас ждет увлекательное исследование, удивительное путешествие в скрытые измерения, определяющие то, что мы называем Вселенной, как в большом, так и в малом масштабе.

Стив Надис , Шинтан Яу , Яу Шинтан

Астрономия и Космос / Научная литература / Технические науки / Образование и наука
Ошибки в оценке науки, или Как правильно использовать библиометрию
Ошибки в оценке науки, или Как правильно использовать библиометрию

Ив Жэнгра — профессор Квебекского университета в Монреале, один из основателей и научный директор канадской Обсерватории наук и технологий. В предлагаемой книге излагается ретроспективный взгляд на успехи и провалы наукометрических проектов, связанных с оценкой научной деятельности, использованием баз цитирования и бенчмаркинга. Автор в краткой и доступной форме излагает логику, историю и типичные ошибки в применении этих инструментов. Его позиция: несмотря на очевидную аналитическую ценность наукометрии в условиях стремительного роста и дифференциации научных направлений, попытки применить ее к оценке эффективности работы отдельных научных учреждений на коротких временных интервалах почти с неизбежностью приводят к манипулированию наукометрическими показателями, направленному на искусственное завышение позиций в рейтингах. Основной текст книги дополнен новой статьей Жэнгра со сходной тематикой и эссе, написанным в соавторстве с Олесей Кирчик и Венсаном Ларивьером, об уровне заметности советских и российских научных публикаций в международном индексе цитирования Web of Science. Издание будет интересно как научным администраторам, так и ученым, пребывающим в ситуации реформы системы оценки научной эффективности.

Ив Жэнгра

Технические науки