Читаем Амбарцумян полностью

Любопытно, что задача о рассеянии света в мутных средах, поначалу рассматриваемая как чисто астрофизическая фундаментальная задача теории звёздных атмосфер, задолго до Амбарцумяна решалась А. Шустером[120], К. Шварцшильдом[121]

, А. Эддингтоном и Милном[122]. Эти работы сводились к уравнениям, описывающим локальные процессы в различных точках среды. Для этого приходилось использовать величины, характеризующие поля излучения во всех точках среды. Однако этот классический метод приводил к настолько сложным интегро-дифференциальным системам уравнений, что их практическое использование сталкивалось с непреодолимыми трудностями.

Амбарцумян подошёл к решению задачи принципиально другим путём. Ему удалось, без всякого рассмотрения поля внутри среды, непосредственно получить интенсивность выходящего из неё излучения. Как это ему удалось, какое чудо он сотворил?

Чтобы помочь неспециалистам хоть как-то оценить важность и элегантность решения Амбарцумяном этой задачи, мы прибегнем к самому удачному описанию сути метода, принадлежащему самому Амбарцумяну:

«Поясним суть решения на одном примере. Представим себе однородную рассеивающую и поглощающую среду, заполняющую полупространство, ограниченное некоторой плоскостью. На эту граничную плоскость падает параллельный пучок лучей. Он входит в среду и там претерпевает многократные рассеяния и поглощения. Спрашивается, какой поток рассеянного излучения выйдет из среды наружу в каком-нибудь заданном направлении?

Для решения этой задачи раньше поступали следующим образом. Анализировали процессы поглощения и испускания света в каждой точке, расположенной внутри рассеивающей среды, устанавливали, какое количество света должна рассеивать единица объёма на различных глубинах, и затем вычисляли поток выходящего в заданном направлении излучения. Поскольку на каждый элемент объёма падают какие-то доли света, рассеянного всеми другими объёмами, то задача оказывалась весьма сложной и приводила к трудным для практического решения интегро-дифференциальным уравнениям.

Предложенный нами метод заключался в том, что к границе среды прикладывался дополнительный слой, обладающий теми же свойствами, что и среда. Полупространство после прибавления слоя малой толщины остаётся полупространством и имеет те же интегральные свойства, поэтому выходящее из него излучение от прибавления дополнительного слоя не должно измениться. Однако наш тонкий слой сам обладает свойством поглощать и рассеивать. Поглощая, он что-то убавляет из падающего на него со всех сторон света, а рассеивая — добавляет. Из сказанного следует, что сумма изменений, внесённых дополнительным тонким слоем, должна быть равна нулю.

А так как все эти изменения непосредственно выражаются через интенсивности падающего и выходящего излучения, получается некоторое простое функциональное уравнение, связывающее эти интенсивности. Эти уравнения и определяют решение задачи. Таким образом, уже не надо "влезать" внутрь среды и анализировать происходящие там явления. Поскольку для построения этого метода существенно то, что конечный результат не изменяется от прибавления дополнительного слоя, основная его идея была названа нами, быть может, несколько претенциозно, принципом инвариантности».

Универсальность принципа инвариантности позволила Амбарцумяну заняться его применением к различным другим задачам теории переноса излучения, а затем и к решению собственно астрофизических задач. Например, с его помощью удалось легко справиться с трудной проблемой флуктуации интенсивностей межзвёздного поглощения света в звёздной системе, содержащей случайно распределённые поглощающие облака.

Решение различных задач теории переноса излучения с помощью метода инвариантного вложения получило дальнейшее развитие в трудах В. В. Соболева и его учеников, в работах С. Чандрасекара и его школы, Р. Веллмана и его группы и, в последние годы, в работах группы бюраканских исследователей — Н. Б. Енгибаряна, А. Г. Никогосяна, О. В. Пикичяна, В. Ю. Теребижа и др. Было показано также, что принцип инвариантности позволяет найти простые пути решения большого класса других задач математической физики и является сильным орудием также в некоторых областях математики. Результаты, полученные Амбарцумяном в этой области математической физики, поражают своей изящностью и наглядностью. Математическая элегантность, оригинальность подхода, простота и ясность рассуждений восхищали его коллег. Милн, который так много сил положил на поиск приближённых решений уравнений переноса, был совершенно восхищён амбарцумяновским методом решения задачи: «…я никогда не мог представить, что теория переноса излучения может достичь такого уровня развития и красоты, каким она стала в руках Амбарцумяна».

Перейти на страницу:

Все книги серии Жизнь замечательных людей

Газзаев
Газзаев

Имя Валерия Газзаева хорошо известно миллионам любителей футбола. Завершив карьеру футболиста, талантливый нападающий середины семидесятых — восьмидесятых годов связал свою дальнейшую жизнь с одной из самых трудных спортивных профессий, стал футбольным тренером. Беззаветно преданный своему делу, он смог добиться выдающихся успехов и получил широкое признание не только в нашей стране, но и за рубежом.Жизненный путь, который прошел герой книги Анатолия Житнухина, отмечен не только спортивными победами, но и горечью тяжелых поражений, драматическими поворотами в судьбе. Он предстает перед читателем как яркая и неординарная личность, как человек, верный и надежный в жизни, способный до конца отстаивать свои цели и принципы.Книга рассчитана на широкий круг читателей.

Анатолий Житнухин , Анатолий Петрович Житнухин

Биографии и Мемуары / Документальное
Пришвин, или Гений жизни: Биографическое повествование
Пришвин, или Гений жизни: Биографическое повествование

Жизнь Михаила Пришвина, нерадивого и дерзкого ученика, изгнанного из елецкой гимназии по докладу его учителя В.В. Розанова, неуверенного в себе юноши, марксиста, угодившего в тюрьму за революционные взгляды, студента Лейпцигского университета, писателя-натуралиста и исследователя сектантства, заслужившего снисходительное внимание З.Н. Гиппиус, Д.С. Мережковского и А.А. Блока, деревенского жителя, сказавшего немало горьких слов о русской деревне и мужиках, наконец, обласканного властями орденоносца, столь же интересна и многокрасочна, сколь глубоки и многозначны его мысли о ней. Писатель посвятил свою жизнь поискам счастья, он и книги свои писал о счастье — и жизнь его не обманула.Это первая подробная биография Пришвина, написанная писателем и литературоведом Алексеем Варламовым. Автор показывает своего героя во всей сложности его характера и судьбы, снимая хрестоматийный глянец с удивительной жизни одного из крупнейших русских мыслителей XX века.

Алексей Николаевич Варламов

Биографии и Мемуары / Документальное
Валентин Серов
Валентин Серов

Широкое привлечение редких архивных документов, уникальной семейной переписки Серовых, редко цитируемых воспоминаний современников художника позволило автору создать жизнеописание одного из ярчайших мастеров Серебряного века Валентина Александровича Серова. Ученик Репина и Чистякова, Серов прославился как непревзойденный мастер глубоко психологического портрета. В своем творчестве Серов отразил и внешний блеск рубежа XIX–XX веков и нараставшие в то время социальные коллизии, приведшие страну на край пропасти. Художник создал замечательную портретную галерею всемирно известных современников – Шаляпина, Римского-Корсакова, Чехова, Дягилева, Ермоловой, Станиславского, передав таким образом их мощные творческие импульсы в грядущий век.

Аркадий Иванович Кудря , Вера Алексеевна Смирнова-Ракитина , Екатерина Михайловна Алленова , Игорь Эммануилович Грабарь , Марк Исаевич Копшицер

Биографии и Мемуары / Живопись, альбомы, иллюстрированные каталоги / Прочее / Изобразительное искусство, фотография / Документальное

Похожие книги