Читаем Аналитика: методология, технология и организация информационно-аналитической работы полностью

Системы же искусственного интеллекта, как правило, обладают всеми этими способностями или их частью. Благодаря этому, системы ИИ способны выявлять отклонения от текущего эталона, накапливать «черновые» гипотезы и через цепь обратной связи устанавливает их статус и полезность. Цепь обратной связи может быть реализована в виде некоторого вспомогательного инструментального комплекса, реализованного на иных чувствительных элементах, нежели основной комплекс сбора информации, либо представлен учителем, «объясняющим» системе, «… что такое «хорошо» и что такое «плохо». В качестве такого учителя часто выступает человек, снабжающий интерпретантой тот признак96, который был выявлен системой ИИ.

Специалисты в области теории систем ИИ сходятся в мнении, что активность и относительная автономность отдельных подсистем системы искусственного интеллекта способна существенно повысить их эффективность и надежность выводов. Активно развивается направление автономных интеллектуальных агентов — автономных подсистем, наделенных автоматными реакциями на некий комплекс однотипных раздражителей. Поведение таких подсистем по отдельности невозможно назвать интеллектуальным, однако, будучи объединены в комплекс, они оказываются в состоянии обеспечить систему более высокого уровня информацией, необходимой для выработки решения о ситуации и степени ее «полезности» для системы в целом. Такая система обычно строится по иерархическому принципу и располагает сведениями о ценности тех или иных ресурсов, важности удержания значений критических параметров в заданных диапазонах и т. д. — то есть, теми сведениями относительно которых принимается решение о семантике нового признака.

В рамках теории ИИ можно выделить два мощных направления: логическое направление

и направление нейронных и нейроподобных сетей.

Логическое направление теории систем искусственного интеллектаосновной упор делает на симбиоз логического аппарата и аппарата теории вероятностей. Основное отличие логических систем ИИ от логических экспертных систем состоит в том, что на основе анализа показателей, используемых для вычисления функции полезности (именно с таких позиций осуществляется интерпретация тех или иных состояний и процессов), система способна самостоятельно корректировать аксиоматику: осуществлять ранжирование аксиом, удалять или вводить новые аксиомы. В принципе такая система в состоянии как развиваться, так и деградировать, однако то, какие именно тенденции будут развиты системой, во многом определяется тем, как на этапе синтеза системы была определена функция полезности.

Серьезнейшим недостатком логических систем ИИ является то, что алгоритмы логических рассуждений трудно поддаются распараллеливанию, если на каком-то этапе и удается выделить несколько относительно независимых логических операций и производить их исчисление разными решателями, то в некоторой точке алгоритм, как правило, сходится. А это значит, что наиболее «долгая» ветвь алгоритма будет определять быстродействие системы в целом. С целью сокращении вычислительных затрат изыскиваются методы логического вывода, задачей которых является установление факта нецелесообразности производства дальнейших вычислений. Однако, несмотря на эти ухищрения, объемы вычислений и быстродействие решателя остаются узким местом логических систем ИИ.

Направление систем искусственного интеллекта на базе нейронных и нейроподобных сетей«ближе к природе»: если логика — это порождение человеческого интеллекта, формальная система, выведенная на основе научного обобщения закономерностей человеческого мышления, то нейронные и нейроподобные сети — это попытка сымитировать не процесс мышления, а «процесс чувствования». В основе построения таких систем лежит принцип действия нейрона и нейронной сети, имитирующей строение центральной нервной системы человека.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже