Реализация случайного процесса методом Монте-Карло представляет собой последовательность розыгрышей единичных жребиев, перемежающихся обычными расчетами, в ходе которых определяется результат возмущающего воздействия на объект или процесс, на исход операции.
Поскольку адекватность модели распределения случайных воздействий в общем случае установить трудно, задачей моделирования с применением метода Монте-Карло является обеспечение
Важную роль в статистических моделях играют гипотезы о характере процессов смены состояний в моделируемой системе. Так, например, весьма интересный случай представляет собой гипотеза о «
2.7 Аналитические модели
Данный класс моделей обладает высочайшей степенью формализации описаний и применяется там, где закономерности протекания процессов и функционирования системы являются хорошо изученными, а сами процессы могут рассматриваться как детерминированные. Нередко аналитические модели справедливо отождествляются с моделями детерминированных процессов. Такие ограничения являются достаточно жесткими, что ограничивает сферу их применения системами, функционирующими в стационарных условиях (т. е. в малой степени подверженных влиянию случайных возмущающих воздействий) или требуют существенного упрощения модели. В качестве примера аналитической модели может рассматриваться модель невозмущенного движения объекта в космическом пространстве.
Аналитическое математическое моделирование — это вид моделирования, в ходе которого основная роль отводится аналитической математической модели, обладающей следующими особенностями:
— аналитическая модель строится на основе некоторой теории или научной гипотезы;
— модель описывает в целом определенный аспект моделируемой системы (процесс в системе) посредством различных математических конструкций (функций или функционалов, алгебраических или дифференциальных уравнений и т. д.);
— модель позволяет получать конечные результаты исследования в виде некоторых формальных соотношений, пригодных для производства количественного или качественного анализа.