В ядерных делениях и слияниях эта доля в миллионы и миллиарды раз больше. Во столько же раз мощнее, значит, может быть ядерная взрывчатка. Надо только придумать способ, чтобы все отдельные ядерные капельки разделились или слились одновременно.
В первом случае речь идет об атомной бомбе, или бомбе деления, где ядерной взрывчаткой должно быть вещество с большими ядрами — например, уран. Во втором случае речь идет о водородной бомбе, начиненной веществом с маленькими ядрами, например, изотопами водорода — дейтерием или тритием.
Но как сделать, чтобы все отдельные ядерные капельки разделились или слились не поодиночке, а разом — коллективно?
Для реакции деления природа подсказала такой способ через несколько месяцев после открытия самого деления в 1939 году (и за несколько месяцев до начала мировой войны). Оказалось, что при делении капли уранового ядра вылетают еще и несколько брызг-нейтронов, каждая из этих «брызг» способна побудить к делению другое ядро, и так далее — пойдет цепная реакция. Надо только собрать в одном месте достаточное количество урана, и атомный взрыв, какого не видал мир, обеспечен. Но сначала надо было добыть достаточное количество этого редкого — и потому дороже золота — вещества: найти месторождения урана и очистить его в сложных процессах. Поэтому, прежде чем мир увидел такой взрыв в 1945 году, понадобились миллиарды долларов и несколько лет усилий многих тысяч людей.
Что касается ядерной реакции слияния, то она испокон веков шла перед глазами мира — в виде солнечного света и сияния других звезд на небе. По прихотливому историческому совпадению в том же самом 1939 году физики сумели объяснить, как именно энергия Солнца рождается в ходе постоянно идущего слияния ядер в солнечных недрах. В солнечной энергостанции ядерное горючее — самый распространенный элемент природы — водород, по два атома которого есть в каждой молекуле воды.
Однако воспроизвести этот естественный процесс в земных условиях оказалось гораздо труднее, чем устроить неестественный, не встречающийся в природе, процесс «коллективного» деления. Причина трудностей в том, что ядерные капли — в отличие от обычных — электрически заряжены и поэтому отталкиваются друг от друга. Это помогает делиться большим ядрам, но мешает слиянию маленьких. Соприкоснувшись, маленькие ядра очень бы энергично слились, но чтобы их «соприкоснуть», требуется огромная сила.
В земных условиях физикам удалось, разогнав отдельные ядерные капельки на ускорителе, дотронуться ими до ядер мишени и убедиться, что слияние при этом действительно происходит. Однако это лишь поштучно, а не с ощутимым количеством вещества.
Звездам, и Солнцу в их числе, справиться с этой задачей помогает гравитация — вещество в центре звезды сжато всем ее собственным звездным весом. А при температурах в миллионы градусов частицы вещества внутри звезды имеют скорости, сравнимые с теми, которые на ускорителе получаются лишь для считанных частиц.
Ядерные реакции, происходящие в таких высокотермических условиях, назвали термоядерными. Назвать-то нетрудно, а вот как воспроизвести звездные условия на Земле?
Легче ответить на вопрос, почему физики стали использовать приставку «супер» для термоядерной бомбы задолго до ее появления. Дело в том, что собирать уран в одном месте можно только до определенного предела в несколько килограммов. Этот предел называется критической массой, и если он достигнут, сама собой начинается взрывная цепная реакция деления. Для реакции слияния никаких критических масс нет, и значит, мощность термоядерного взрыва в принципе может быть как угодно большой. Сколь угодно больше чудовищного взрыва, испепелившего Хиросиму. Это и побудило говорить о супербомбе.
С термоядерной суперпроблемы начал И.Е. Тамм свою статью «Внутриатомная энергия», опубликованную в газете «Правда» весной 1946 года.[170]
Но для него вовсе не взрывы определяли важность проблемы:Член-корреспондент Академии наук сообщил читателям «Правды», что энергия Солнца рождается ядерной реакцией, в которой «при превращении одного грамма водорода в гелий выделяется столько же энергии, сколько и при сгорании 15 тонн бензина». С 1919 года, когда Резерфорд провел первую искусственную ядерную реакцию, «в лабораторных условиях осуществлено свыше тысячи различных ядерных реакций», но «до последнего времени их практическое использование было невозможно». Возможным оказалось лишь использование внутриатомной энергии урана — в атомных бомбах, «сброшенных американцами на Японию».