Количество транзисторов в процессоре 80386 (рис. 2.7) достигло рекордной для того времени величины – 275 000 (вначале использовалась технология 1,5 мкм, а в дальнейшем – 1 мкм).
Рис. 2.7. Процессор 386
С помощью нового процессора стало возможным адресовать 4 Гбайт памяти, а размеры виртуальной памяти достигли 64 Тбайт (терабайт). В 1985 г. такие возможности были просто ошеломляющи, но посмотрите на свой персональный компьютер – сегодня винчестер в 4 Гбайт явно маловат для мультимедийных применений!
Процессор 80386 выпускался не только корпорацией Intel, но и многими другими фирмами в самых разных модификациях. Например, наиболее популярным вариантом корпуса стал пластмассовый с планарными выводами, которые припаивались к материнской плате, что не допускало смены процессора. А компьютеры с таким типом процессора, которые до сих пор с успехом используются, имеют тактовые частоты 33 и 40 МГц. Заметим, что для промышленных компьютеров даже сейчас выпускаются не только процессоры 386, но и 16-разрядные 8088 и 80286.
Несмотря на тщательность проработки конструкции, к великому сожалению, в первых версиях процессора Intel 386 содержалась ошибка, касающаяся выполнения 32-разрядных арифметических операций. Поэтому на корпуса процессоров, которые неправильно функционируют в 32-разрядном режиме, нанесена маркировка "16 bit operations only". То есть такие процессоры могут правильно выполнять только программы, работающие в 16-разрядном режиме, а, например, установить Windows 95 на компьютер с таким процессором не удастся.
Так как многие возможности Intel 386 довольно долгое время были не востребованы широким кругом пользователей, то для уменьшения цены на компьютеры в 1988 г. был выпущен процессор, который маркировался суффиксом SX. Процессор Intel 386SX, как и 8088, обладал сокращенной в два раза шиной данных, а для адресации ячеек памяти использовалось всего 24 разряда вместо 32-х. После выхода Intel 386SX полноразрядные варианты стали носить название Intel 386DX.
Для портативных компьютеров в 1990 г. был выпущен процессор Intel 386SL. Он полностью повторял основные технические характеристики Intel 386SX. Для целей энергосбережения использовались технические решения, которые позволяли отключать неиспользуемые внутренние блоки. Кроме того, в архитектуру процессора включили кэш-память и средства управления памятью. Количество транзисторов в процессоре увеличилось до 855 000 (технология 1 мкм).
Сопроцессоры
Прежде чем мы перейдем к обсуждению процессоров Intel 486, которые относятся ко второму поколению 32-разрядных процессоров, надо вспомнить еще об одной линии компьютерных микросхем – математических сопроцессорах, предназначенных для использования в компьютерах.
Когда-то тема использования сопроцессора была так же актуальна, как сегодня диспут о различных ускорителях для видеокарт. Теперь же, когда в процессорах Pentium сопроцессор встроен непосредственно в ядро, являясь одним из его многочисленных логических блоков, о нем вспоминают только программисты. Но поскольку принципы работы встроенного сопроцессора остались неизменными, и с учетом того, что в процессорах Pentium ММХ регистры сопроцессора используются по другому назначению, то кратко рассмотрим историю развития и этого семейства микросхем.
У компьютеров минимальная единица данных – это бит, который может быть равен 0 или 1. Наиболее популярное машинное слово – байт, в котором 8 битов. Если в байте все биты равны нулю, то считается, что в байте записано число 0.
Добавляя по 1 к содержимому байта, мы получим ряд:
• 0000 0001 – десятичное число 1;
• 1111 1111 – десятичное число 255 (в ряде случаев компьютер считает, что это минус единица).
Получается ряд целых чисел: 0, 1, 2, 3, …, 100, …, 255.
Микросхемы процессоров, рассматриваемые в этой книге, могут отлично проводить арифметические действия с любыми целыми числами: сложение, вычитание, умножение и деление. Но если попросить разделить, например пять на два, то процессор честно ответит – два. Оказывается, число 1,5 неизвестно процессору, т. к. оно является дробным числом.
Сделаем здесь небольшое отступление и рассмотрим используемые в информационных технологиях системы счисления. В компьютерной литературе широко используется двоичная и шестнадцатеричная системы счисления. Для непрограммиста такой подход несколько неожидан, т. к. в реальной жизни используется десятичная система счисления, например нумерация страниц этой книги. Правда, современный человек вполне усвоил, что компьютеры оперируют двоичной системой счисления: да – нет или 0–1, а вот шестнадцатеричная система счисления вызывает множество вопросов. Но тут следует сказать, что для описания работы современных процессоров такая система счисления дает возможность легко понимать содержимое регистров и разбираться с адресной информацией.
Для удобства запоминания связи между разными системами счисления рассмотрите табл. 2.1 и попробуйте перевести, не смотря уже в таблицу, несколько десятичных чисел, например 11 и 68, в разные системы счисления.