Читаем Аппараты с перемешивающими устройствами полностью

Для расчета гидродинамики перемешивания могут быть применены четыре подхода:

– прямое численное решение уравнений Навье-Стокса (DNS),

– применение аналитических теорий турбулентности,

– применение моделей переноса турбулентности,

– применение моделей замыкания движений мелкого масштаба.

Турбулентное движение имеет вихревую структуру и графические материалы с картиной вихревых дорожек и картиной обтекания тел широко представлены в литературе. Между вихрями разного масштаба происходит постоянное взаимодействие. Структура турбулентности описывает эти взаимодействия. Течение переходит из ламинарного (слоистого) в турбулентное при потере устойчивости. В потоке появляются возмущения и при их развитии устойчивое ламинарное движение переходит в турбулентное. Такие возмещения могут вызываться, например, наличием каких-либо элементов конструкции на пути течения потока. Развитая турбулентность (завихренное течение) представляет собой иерархию вихрей [9,с.15], в которой крупные вихри теряют устойчивость и распадаются на вихри более мелких масштабов (турбулентное перемешивание). Каскадный процесс передачи энергии от больших вихрей к меньшим происходит до устойчивых вихрей минимального масштаба. Минимальные вихри передают энергию за счет вязкости, то есть их кинетическая энергия преобразуется в выделение теплоты.

Турбулентное течение в отличии от ламинарного имеет большое число степеней свободы. По этой причине в литературе широко используется статистическое описание турбулентных течений.

В потоке величины условно делятся на осредненные (регулярные) и пульсационные (нерегулярные) [9,с.12]. Для описания турбулентного течения используются осредненные величины по времени или пространству. Появление какой-либо определенной структуры потока среди возможных конфигураций определяется согласно законам математической теории вероятностей.

В реальных задачах находят на полное определение вероятностей, а только для отдельных характеристик [9,c.13], таких как давление средние скорости в различных точках пространства, а также вторые моменты пульсаций турбулентности интенсивность турбулентности, компоненты импульса. Решение проблемы турбулентности по существу эквивалентно нахождению всех моментов при задании общих условий.

Аналитическая теория турбулентности получается на основании системы уравнений Фридмана-Келлера [9,с.13.]. Для применения этих уравнений к реальному течению с конечным числом степеней свободы, требуется выполнить математическую операцию замыкания уравнений, так как неизвестных в уравнениях больше, чем самих этих уравнений.

Полуэмпирическая теория турбулентности, построенная с использованием результатов исследований течений крупномасштабных вихрей [9,с.14] основаны на рассмотрении турбулентности в виде хаосу. Вводятся понятия интенсивности турбулентности, пути перемешивания, коэффициенты турбулентной вязкости, диффузии и теплопроводности. Вводятся гипотезы, отражающие физический процесс. Затем гипотезы проверяют экспериментальным путем, в результате чего для полуэмпирических моделей получают константы.

Модель турбулентности «k – ε».

Существует модель однородной изотропной турбулентности, но с помощью её нельзя провести описание реального потока [9,с.16]. Существует модель локально изотропной турбулентности. Согласно этой модели турбулентные пульсации для мелких масштабов с большим числом Рейнольдса можно рассматривать как однородные изотропные. Колмогоров ввел гипотезу [9,с.18] о том, что статический режим для мелких масштабов зависит от коэффициента вязкости k и скорости (средней) диссипации энергии ε.

Между масштабом больших вихрей L и масштабом мелких вихрей η, диссипация энергии ε определяет статистический режим турбулентности, так как вязкость влияет только на мелкие масштабы. Масштаб вихрей, на который влияет вязкость получается из этой гипотезы Колмогорова с учетом соображений размерности [9,с.18]:



Прямое численное решение уравнений Навье-Стокса.

При прямом численном уравнений Навье-Стокса, уравнения решаются для несжимаемой жидкости [10,с.311]. Для решения используются граничные периодические условия. То есть учитывается изменение функций при переходе между соседними кубическими элементами сплошной среды, как показано в работе [11,с.14].

При решении уравнений с граничными условиями методом конечных элементов с применением расчетной сетки по 3D-модели, уравнения Навье-Стокса переписываются в разностной форме для узлов сетки.

Возможно решение уравнений численным спектральным методом. По этому методу решение уравнений Навье-Стокса (с учетом граничных условий) аппроксимируется в форме усеченного ряда Фурье [10,с.312].

Конечно-разностный метод расчета сравнивается со спектральным по пяти параметрам [9,с.314]:

– скорость сходимости,

– эффективность (затраты на расчет для заданной погрешности результата),

Перейти на страницу:

Похожие книги

Всевидящее око фюрера
Всевидящее око фюрера

Книга посвящена деятельности эскадрилий дальней разведки люфтваффе на Восточном фронте. В отличие от широко известных эскадр истребителей или штурмовиков Ju-87, немногочисленные подразделения разведчиков не притягивали к себе столько внимания. Их экипажи действовали поодиночке, стараясь избегать контакта с противником. Но при этом невидимая деятельность разведчиков оказывала огромное влияние как на планирование, так и на весь ход боевых действий.Большая часть работы посвящена деятельности элитного подразделения люфтваффе – Aufkl.Gr.Ob.d.L., известной также как группа Ровеля. Последний внес огромный вклад в создание дальней разведки люфтваффе, а подчиненное ему подразделение развернуло свою тайную деятельность еще до начала войны с Советским Союзом. После нападения на СССР группа Ровеля вела разведку важных стратегических объектов: промышленных центров, военно-морских баз, районов нефтедобычи, а также отслеживала маршруты, по которым поставлялась союзная помощь (ленд-лиз). Ее самолеты летали над Кронштадтом, Севастополем, Москвой, всем Поволжьем, Уфой и Пермью, Баку, Тбилиси, даже Ираном и Ираком! Группа подчинялась непосредственно командованию люфтваффе и имела в своем распоряжении только лучшую технику, самые высотные и скоростные самолеты-разведчики.

Дмитрий Владимирович Зубов , Дмитрий Михайлович Дегтев , Дмитрий Михайлович Дёгтев

Военное дело / История / Технические науки / Образование и наука
История мусора. От средних веков до наших дней
История мусора. От средних веков до наших дней

Проблема отношений человека и его отходов существует с незапамятных времен. В этой книге рассказывается, какие приключения и перипетии ожидали тех, кто имеет дело с бытовыми отходами, повествуется об их удачах и невзгодах. Здесь приведены свидетельства человеческих усилий в деле освобождения от остатков жизнедеятельности, напоминается о том, сколько воображения, изобретательности проявлено, чтобы извлечь из всего этого толику полезных ресурсов и использовать их, будь то в богатых, бедных или развивающихся странах. Отбросы убивают, угрожают поглотить целые города, изменяют городской пейзаж, отапливают и освещают жилища, обеспечивают выживание миллионов обиженных судьбой, создают всякого рода «малые промыслы», откармливают стада свиней, играют с детьми, дают обманчивый, но все же выход из одиночества для узников, служат источником вдохновения для сумасшедших и художников, а то и основой праздничных зрелищ.Катрин де Сильги — видный специалист по охране окружающей среды.

Катрин де Сильги

Технические науки
Творчество как точная наука. Теория решения изобретательских задач
Творчество как точная наука. Теория решения изобретательских задач

Творчество изобретателей издавна связано с представлениями об «озарении», случайных находках и прирожденных способностях. Однако современная научно-техническая революция вовлекла в техническое творчество миллионы людей и остро поставила проблему повышения эффективности творческого мышления. Появилась теория решения изобретательских задач, которой и посвящена эта книга. Автор, знакомый многим читателям по книгам «Основы изобретательства», «Алгоритм изобретения» и другим, рассказывает о новой технологии творчества, ее возникновении, современном состоянии и перспективах. В книге разобраны 70 задач, приведена программа решения изобретательских задач АРИЗ-77 и необходимые для ее использования материалы. Книга рассчитана на широкий круг читателей, в первую очередь на инженеров, разработчиков новой техники, изобретателей, студентов технических вузов. На изобретательских примерах рассмотрены и вопросы управления творческим процессом вообще, поэтому книга адресована и читателям, не связанным с техническим творчеством. Особый интерес книга представляет для научных работников и исследователей в области кибернетики, искусственного интеллекта, психологии мышления.

Генрих Саулович Альтов

Технические науки / Прочая научная литература / Образование и наука