Но снаряд вращается. Как и маховик гироскопа, он стремится сохранить устойчивость; на действие внешней силы он отвечает поворотом в направлении, перпендикулярном тому, по которому действует сила. При этом он подчиняется такому правилу: если какая-то точка снаряда получила толчок, направленный перпендикулярно (по нормали) к оси снаряда, то от толчка голова снаряда отклонится в ту сторону, куда должна притти через три четверти оборота точка, получившая толчок (рис. 122).
Сопротивление воздуха толкает голову снаряда снизу вверх; снаряд отвечает на это тем, что поворачивает голову вправо, под прямым углом к направлению действия внешней силы и в сторону своего вращения (рис. 123).
В этом новом положении воздух сильнее давит на снаряд слева, стремится повернуть его голову вправо. Упрямый снаряд-гироскоп повернет ее вниз. Тогда воздух, действуя на снаряд сверху, начнет загибать его голову вниз. А снаряд-гироскоп сделает опять по-своему – и повернет ее влево. Как только воздух попробует свернуть голову снаряда влево, снаряд поднимет ее вверх. И такая борьба снаряда-гироскопа с силой сопротивления воздуха продолжается во все время полета: Голова снаряда перемещается то вправо, то вниз, то влево, то вверх, то-есть описывает около траектории круг, а ось снаряда описывает коническую поверхность (рис. 124).
В результате, вращающийся снаряд летит все время головой вперед и в таком же положении падает на землю (рис. 125).
И получается, что та же самая сила сопротивления воздуха, которая мешала, опрокидывала невращающийся снаряд, начинает помогать, как только снаряд приобретает вращательное движение: сила сопротивления воздуха теперь уже «привязывает» голову снаряда к траектории, делает его послушным.
Теперь, когда мы уже узнали все силы, действующие на снаряд во время полета, мы должны понять разницу в очертаниях траекторий, показанных на рисунке 109
На самом деле траектория всегда несимметрична: дальняя – нисходящая – ветвь у нее круче и короче восходящей, и снаряд падает круче, чем вылетает из орудия, то-есть угол падения снаряда всегда больше угла бросания (рис. 126).
Вернемся теперь к вопросу – почему же не сделать очень длинный снаряд, так сказать, снаряд-копье?
Оказывается, такой снаряд был бы все же недостаточно устойчив в полете.
Чтобы обеспечить ему устойчивость, надо было бы вращать его еще раза в два-три быстрее, чем вращается современный снаряд.
Для этого и нарезы в орудии надо было бы сделать раза в два-три круче, чем их делают теперь.
Но тогда мягкий медный ведущий поясок снаряда не выдержал бы громадного давления, какое пришлось бы на его долю при такой крутой нарезке и при большом весе длинного снаряда.
Нужны, значит, какие-то новые технические приемы, чтобы обеспечить такому длинному и тяжелому снаряду достаточно быстрое вращение.
Что можно сделать в этом направлении?
Еще в шестидесятых годах девятнадцатого века англичанин Витворт предложил многоугольный (или, как говорят, полигональный) снаряд (рис. 127). Разумеется, и канал орудия Витворта представлял собой в сечении многоугольную призму, несколько скрученную, – вроде того, как скручивается веревка, – чтобы придать вращение этому снаряду.
В свое время это предложение не нашло широкого применения, а вскоре и вовсе было заброшено. Однако в наши дни его извлекли из архивов и проводят опыты со снарядами Витворта.
Есть и другие предложения. Уже после империалистической войны француз Шарбонье предложил и сумел изготовить снаряд с готовыми выступами, или, иначе, «нарезной снаряд» в десять калибров длиной (рис. 128). Снаряд этот имеет большие преимущества перед старыми: поперечная нагрузка у снаряда Шарбонье вдвое больше, чем у обычного, а поэтому и летит он заметно дальше. Вес снаряда Шарбонье примерно вдвое больше, чем вес старого снаряда, а потому в нем помещается значительно: больше взрывчатого вещества, чем в старом.
Во время своих опытов Шарбонье стрелял из 155-миллиметровой пушки снарядом в 90 килограммов весом вместо обычных 43. Снаряд этот пролетал 19 километров вместо обычных 16.
Но изготовлять такие снаряды с готовыми нарезами трудно и дорого, а заряжать орудие таким снарядом долго и неудобно: уже во время заряжания снаряд должен двигаться своими выступами по нарезам орудия.
Вот почему снаряды Шарбонье пока еще не нашли широкого применения.
В стратосферу
Как видите, много хлопот причинило артиллеристам сопротивление воздуха. Кое с чем удалось справиться, и притом с успехом: заставив снаряд вращаться, добились того, что он стал устойчив на полете, а головой начал следить за траекторией.
Но главное заключается в том, что сопротивление воздуха все же резко сокращает дальность полета снаряда.