Рис. 12.12. Эволюция светимости двух протозвезд, массы которых чуть больше и чуть меньше нижнего предела, необходимого для протекания водородного термоядерного синтеза. Одна станет нормальной звездой, долгоживущим красным карликом, а другая — коричневым карликом с очень коротким этапом свечения.
Красивая смерть
Когда у звезды заканчивается водород и начинается термоядерный синтез с участием накопившегося гелия, ее «термоядерный котел» многократно наращивает свою мощь, и она разбухает под давлением излучения, стабилизируясь при некотором (очень большом) размере. Но почему звезда раздувается не до бесконечности, что останавливает этот процесс? В качестве модели красного гиганта можно взять воздушный шарик: пока он не надут, он непрозрачен. А когда мы его надуваем, то же самое количество вещества распределяется по большей площади поверхности, и шарик становится прозрачным. Так и лучевое давление распирает звезду до тех пор, пока она не становится достаточно прозрачной, чтобы оно могло выйти наружу.
Рис. 12.13. Зависимость «масса — светимость» для звезд главной последовательности. Для звезд типа Солнца L ~ M 4
. Для звезд в широком диапазоне масс (0,2–20 M☉) L ~ M 3,5.Результаты численных расчетов показывают, что поверхность красного гиганта вовсе не однородна: на ней выделяются какие-то большие «блямбочки». Они похожи на конвективные ячейки, но у Солнца эти ячейки маленькие, а здесь почему-то сравнимы с размером звезды. Единственная пока звезда этого типа, у которой мы детально можем их сфотографировать, — это Бетельгейзе. И действительно, мы все время видим на ее поверхности темные и светлые пятна. Один из лучших портретов звезды Бетельгейзе, полученный с помощью интерферометра ближнего ИК-диапазона с базой 40 м на основе трех телескопов обсерватории Маунт-Хопкинс (Аризона), приведен на рис. 11.15. Чтобы проверить, связаны ли эти детали поверхности с конвекцией, сделали более совершенную 3D-модель (рис. 12.14). Гидростатически равновесный шар эволюционировать не будет, его состояние не будет меняться. Поэтому на его поверхность искусственно наложили малые возмущения, дали как бы исходный толчок. Визуально в самом начале это выглядит как мелкая рябь на поверхности шарика. Далее она развивается в конвективные ячейки, которые начинают расти, и вскоре каждая из них приобретает размер, сравнимый с радиусом звезды. Известно, что размер конвективных ячеек всегда сопоставим с глубиной слоя однородного флюида (жидкости или газа). Значит, полученный результат свидетельствует о том, что в атмосфере красного гиганта свойства (плотность, температура) почти не меняются с глубиной, она почти вся однородная.
Рис. 12.14. Результат цифрового моделирования конвективных процессов на Бетельгейзе.
На портретах Бетельгейзе в длинноволновых диапазонах излучения (см. рис. 11.15) видно, что звезда теряет вещество с поверхности, как всегда происходит на заключительных этапах жизни. При удалении от центра гравитация ослабевает, и получается, что звезда сбрасывает оболочку.
Рис. 12.15. С. А. Жевакин.
На нескольких последовательных фотографиях звездного неба бывает видно, что некоторые звездочки мигают, т. е. меняют свою яркость. Дело в том, что в ходе превращения в красный гигант некоторые звезды становятся неустойчивыми: то, сжимаясь, разогреваются, то, расширяясь, остывают, т. е. пульсируют, блеск их регулярно меняется (рис. 12.16). Не по синусоиде, конечно, но колебания вполне регулярные. Такие звезды называют цефеидами.
Рис. 12.16. Кривая блеска цефеиды.
Человек, который первым понял физическую причину этого явления и описал механизм пульсации звезд, — отечественный радиофизик Сергей Жевакин, он работал в Нижнем Новгороде. Генерация энергии в ядре идет непрерывно, и излучение, доходя до слоя слабоионизованного вещества (в основном гелия), возбуждает его атомы. Они теряют электроны, и среда становится прозрачной. Фотоны быстро «выпрыгивают», вещество охлаждается, электроны постепенно возвращаются на свои места, среда снова становится непрозрачной и запирает излучение. Тогда оно опять начинает нагревать этот слой, и цикл замыкается. Получается своего рода двухтактный двигатель. Оказалось, что период колебаний таких звезд однозначно связан с их светимостью, и это позволяет использовать их в качестве индикатора расстояния (рис. 12.17).
Владимир Николаевич Григоренко , Георгий Тимофеевич Береговой , Дарья Александровна Проценко , Иван Николаевич Почкаев , Ростислав Борисович Богдашевский
Фантастика / Любовное фэнтези, любовно-фантастические романы / Астрономия и Космос / Техника / Транспорт и авиация / Боевая фантастика / Космическая фантастика / Прочая научная литература / Образование и наука