Читаем Астрономия. Популярные лекции полностью

ТЕРМОЯДЕРНАЯ РЕАКЦИЯ — элементарная ядерная реакция, происходящая в ходе термоядерного синтеза в горячей плазме, частицы которой хаотически распределены по скоростям (в отличие от частиц, разогнанных в ускорителе).

ТЕРМОЯДЕРНЫЙ СИНТЕЗ — цепочка ядерных реакций, происходящих в горячей плазме и приводящих к слиянию легких атомных ядер и образованию ядер более тяжелых элементов. Энергия, необходимая для преодоления кулоновского барьера при сближении ядер, черпается из кинетической энергии их хаотического теплового движения. В результате выделяется ядерная энергия связи, часть которой переходит в тепло, например в форме быстрых нейтронов и γ-квантов. Другую часть уносят нейтрино.

CNO-цикл термоядерного синтеза гелия из водорода.


Термоядерный синтез — основной источник энергии излучения звезд. Бóльшую часть своей активной жизни звезда получает энергию в результате реакций превращения ядер водорода (протонов) в ядра гелия. Эти реакции происходят во внутренней области (ядре) звезды, где температура газа превышает 10 млн K. Огромные запасы внутриядерной энергии постепенно освобождаются в недрах звезды, обеспечивая ее длительное существование в виде почти не меняющегося со временем (стационарного) гидростатически равновесного тела. В звездах типа Солнца этот процесс может продолжаться более 10 млрд лет. После «выгорания» водорода температура в ядре звезды повышается до 100 млн K, и там начинается реакция превращения гелия в углерод. В процессе эволюции звезд, значительно более массивных, чем Солнце, цепочка ядерных реакций продолжается и после выгорания гелия, приводя к образованию в недрах звезды всё более тяжелых (по атомной массе) элементов вплоть до образования ядер Fe и Ni, которые имеют наибольшую энергию связи в расчете на один нуклон. Появление на определенных стадиях эволюции звезд свободных нейтронов и захват их ядрами элементов группы железа приводит к синтезу еще более тяжелых ядер, вплоть до трансурановых элементов.

Термоядерные реакции в звездах приводят к постепенному изменению химического состава звездного вещества, что вызывает перестройку звезды и ее продвижение по эволюционному пути. Первый этап эволюции заканчивается истощением водорода в центральных областях звезды. Затем, после повышения температуры, вызванного сжатием центральных слоев звезды, лишенных источников энергии, становятся эффективными термоядерные реакции горения гелия, которые сменяются реакциями горения C, O, Si и последующих элементов — вплоть до Fe и Ni. Вследствие сильной зависимости подбарьерных термоядерных реакций от температуры на каждом очередном этапе горения температура звездного вещества остается примерно постоянной. После истощения очередного ядерного горючего происходит повышение температуры и плотности до тех пор, пока не включаются новые термоядерные реакции между ядрами — продуктами предыдущего этапа эволюции. Следовательно, каждому этапу звездной эволюции соответствуют определенные термоядерные реакции.

Все каналы термоядерной реакции синтеза гелия из водорода в рамках pp-цепочки с указанной в процентах вероятностью каждого из них в точках разветвления.


Первые в цепи таких термоядерных реакций — водородные. Они протекают двумя путями в зависимости от начальной температуры Tc в центре звезды, которая связана с ее массой M в момент достижения главной последовательности. При Tc < 17 млн K (M ≲ 1,2 M) основной оказывается pp-цепочка реакций синтеза гелия из водорода, при более высоких температурах преобладают реакции углеродного цикла. Главная, т. е. наиболее медленная, реакция pp-цепочки — первичная реакция, в которой участвуют два протона:

1H + 1H → 2D + e+ + ν,

в ней происходит позитронный распад одного из протонов в момент сближения двух протонов на расстояние действия ядерных сил. Затем следуют реакции

2D + 1H → 3He + γ ;

3He + 3He → 4He + 21

H.

Синтез гелия из водорода в реакциях углеродного цикла протекает при участии катализаторов, роль которых играют малые примеси изотопов C, N и O в первоначальном звездном веществе. Общий результат водородного или углеродного цикла можно записать в виде

4 1H → 4He + 2ν + 26,73 МэВ (6,4 · 1014 Дж/кг).

Часть освобождающейся в этой реакции энергии уносят нейтрино: ≈0,6 МэВ в pp-цепочке и ≈1,7 МэВ в углеродном цикле на один образовавшийся атом гелия. Остальная энергия постепенно просачивается к поверхности звезды и поддерживает ее свечение многие миллионы и миллиарды лет.

Ярчайшие звезды

Обозначения: p — параллакс в угловых секундах; r — расстояние; MV

— абсолютная звездная величина в фильтре V; LV/L — светимость (LV) в фильтре V в единицах светимости Солнца (L).


* После числа отмечена значительная переменность блеска (v) или его слабая переменность (v?).

** У двойных звезд с компонентами сравнимой светимости в спектре видны две системы линий.

Перейти на страницу:

Похожие книги