Интересно, что менее двухсот лет назад известный философ Огюст Конт сказал: «Мы уже многое узнали о природе, но есть такое, что мы не узнаем никогда, — это химический состав звезд, потому что их вещество никогда не попадет к нам в руки». Действительно, в руки к нам оно вряд ли когда-нибудь попадет, но прошло буквально 15–20 лет, и люди изобрели спектральный анализ, благодаря которому о химическом составе как минимум поверхности звезд мы узнали практически всё. Так что никогда не говори «никогда». Напротив, всегда найдется способ сделать то, во что ты поначалу не веришь.
Но прежде чем говорить о спектре, посмотрим еще раз на цвет звезды. Мы уже знаем, что максимум в спектре с увеличением температуры смещается в голубую область (рис 11.3), и это надо использовать. И астрономы научились это использовать, потому что снять полный спектр — дело очень затратное. Нужны большой телескоп и длительное время наблюдения, чтобы накопить достаточно света на разных длинах волн — и при этом получить результат лишь для одной исследуемой звезды. А цвет можно измерять очень просто, причем для многих звезд одновременно. И для массового статистического анализа мы просто фотографируем их два-три раза через разные светофильтры с широким
Рис. 11.4. Спектры химических элементов в видимой области.
Но бывает мало двух фильтров: всегда можно ошибиться, как с Солнцем на горизонте. Поэтому помимо окон пропускания Visual и Blue астрономы обычно используют и третье — Ultraviolet, на границе прозрачности атмосферы. Три снимка уже вполне точно говорят о том, в какой мере межзвездная среда ослабляет свет каждой звезды и какова собственная температура поверхности звезды. Для массовой классификации звезд такая трехполосная фотометрия — пока единственный способ, позволивший изучить более миллиарда звезд.
Вселенская паспортизация звезд
Спектр, конечно, гораздо полнее характеризует звезду. Он представляет собой «паспорт» звезды, потому что спектральные линии говорят нам об очень многом. К словам «спектральные линии» мы все привыкли, представляем, что это такое. По горизонтальной оси — длина волны, связанная с тем, на какой частоте излучается свет. Но каково происхождение формы линий, почему они выглядят как прямые вертикальные черточки, а не кружочки, треугольники или какие-нибудь загогулинки? Спектральная линия — это монохроматическое изображение входной щели спектрографа. Если сделать щель в виде крестика, то получится набор крестиков разного цвета. О таких простых вещах студент-физик, по-моему, должен задумываться. Или, как в армии, сказали «линия» — значит линия? Отнюдь не всегда это линия, потому что в спектрографе не обязательно используется входная щель, хотя, как правило, входное отверстие — это вертикальная прямоугольная щель, так удобнее.
Рис. 11.5. Горячий газ испускает лучи с дискретным спектром, электропроводящий материал генерирует сплошной спектр.
В схеме любого спектрографа всегда есть диспергирующий элемент: в этом качестве может выступать призма или дифракционная решетка. Звезда — облачко горячего газа — испускает характерный набор квантов разных частот. Мы пропускаем их через входную щель и диспергирующий элемент и получаем изображения щели в разных цветах, упорядоченно расположенные по длине волны (рис. 11.5).
Если излучают свободные атомы химических элементов, то спектр получается линейчатым. А если взять в качестве источника излучения горячую спираль лампы накаливания, то получится спектр непрерывный. Почему так? В металлическом проводнике нет характерных уровней энергии, там электроны, бешено двигаясь, излучают на всех частотах. Поэтому спектральных линий так много, что они перекрываются друг с другом и получается