Прохождение участка максимальных тепловых потоков осуществляется с использованием изменения угла крена в пределах от 0 градусов до 60 градусов, что обеспечивает необходимую продольную и боковую дальность и вывод в заданный район посадки. Маневрирование по крену существенно упрощает схему управления и снижает до минимума затраты топлива на газодинамическое управление при спуске. Максимальные перегрузки, испытываемые летчиком на участке спуска, не превышают -1,4 g по оси X (в направлении «грудь-спина») и +1,4 g по оси Y («голова-ноги»). После снижения скорости до М=10 происходит программное раскладывание консолей до 45 градусов.
Следующая окончательная раскладка консолей в максимальное положение (угол поперечного V – 30 градусов) происходит на скорости М=2,5. На расстоянии 60 км до аэродрома запускается ТРД, развивающий тягу 1000 кгс на скорости М=0,35, и с высоты 2000 м начинается участок планирования, на котором самолет осуществляет предпосадочное маневрирование со скоростью около 400 км/час, снижаясь с вертикальной скоростью 18 м/сек по траектории с углом наклона 12 градусов.
С высоты 500 м производится заход на посадку. Выпускаемое шасси уменьшает аэродинамическое качество с 4,5 до 4. При посадочном весе 4,5 т самолет выдерживает посадочный угол 14 градусов, касаясь посадочной полосы на скорости 225-250 км/час. Длина пробега еще раскаленного аппарата по грунтовой полосе составляет 1000-1700 м. В конце полосы самолет уже ждут на почтительном расстоянии (все-таки остатки токсичного топлива!) встречающие, да и самолет только что вернулся из плазменной печи, нужно дать ему время остыть… А может быть, посадочная команда, одетая в костюмы химической защиты, быстро разворачивает наземные средства охлаждения корпуса и вентиляции внутренних отсеков? В любом случае это заканчивается выходом устало улыбающегося летчика-космонавта (а ведь никто из отряда наших космонавтов так и не стал по-настоящему летчиком-космонавтом, реализовав оба этих термина в одном полете…
Немногочисленные счастливцы, слетавшие в космос на американском шаттле, были там только пассажирами…), поздравлениями и объятиями на N-ском аэродроме в западной части СССР…
Этого не было. Но это могло бы быть! Такой полет мог реально состояться в начале 1970-х годов!
Много позднее, уже в наши дни, когда отшумели все эмоции по поводу закрытия программы ВОС «Спираль», один из конструкторов в беседе с автором сказал: «С ГСР это был еще, конечно, вопрос, а вот с орбитальным кораблем – ЭПОСом – вопросов нет, его реально можно было построить, и он бы сейчас летал…» Добавим от себя – только, наверное, все-таки с иной теплозащитой.
На базе экспериментального орбитального самолета планировалось создать следующие варианты боевого пилотируемого орбитального самолета:
– разведчика для дневной фото- и постоянной всепогодной радиолокационной разведки;
– ударного самолета с ракетой «Космос-Земля» для уничтожения авианосных соединений противника и малоподвижных площадных целей;
– инспектора-перехватчика космических целей.
Из всех вариантов конструкторы наибольшее внимание уделяли варианту дневного фоторазведчика. Это связано с первоочередными потребностями военного заказчика системы, с одной стороны, и с более легкой модификацией детально проработанного ЭПОСа в фоторазведчик, с другой.
Остальные варианты требовали доработки конструкторской документации по мере уточнения методов боевого применения и дальнейшего продвижения смежных работ по оборудованию и бортовым системам. В результате проектирования было определено, что боевой орбитальный самолет при одинаковой с экспериментальным самолетом геометрии может иметь закабин- ный отсек для размещения спецоборудования объемом 2 м
В ударном варианте для размещения ракеты «Космос-Земля» объема закабинного отсека явно не хватало, и дополнительный объем 2 м