Рассмотренный механизм образования фотоэлектронов приводит к выводу, что фотоэффект можно наблюдать лишь в некотором диапазоне частот. Раз энергия электрона
E=MV
2/2
=hf, а его скорость связана с радиусом орбиты
Rзависимостью
V=2
Rf, то
f=h/2
2
R
2
M. Но радиус
Rорбиты электрона в атоме не может быть ни слишком велик, ни слишком мал, а, значит, и диапазон частот излучения, выбивающего электроны, ограничен сверху и снизу. Электрон не должен находиться слишком близко к ядру, где кулоновское притяжение ядра преобладает над магнитной силой (как показывает опыт Резерфорда). Внешний электрон обязан располагаться за сферой внутренних, узловых электронов, экранирующих заряд ядра. Это даёт синюю границу фотоэффекта. С другой стороны, радиус орбиты не может быть больше размеров атома: вне атомного остова магнитное поле быстро спадает, и атом в этой области не может удержать электроны на орбите. Так что, и для внутреннего фотоэффекта, где электрон остаётся в образце и ему не надо совершать работу выхода, должна быть красная граница фотоэффекта: свет с частотой меньшей
f=h/2
2
R
2
M— неэффективен (
R— радиус атома). И такая красная граница обнаружена.Интересно рассчитать эти границы, зная минимальный
rи максимальный
Rрадиусы орбиты электрона (Рис. 151). Минимальный радиус должен быть порядка сотни радиусов ядра, то есть электроны вряд ли могут располагаться ближе
r10
–13м. Отсюда, — максимальная частота
f=h/2
2
r
2
M10
21Гц. Поэтому, излучение с частотой много большей 10
21Гц (жёсткие гамма-лучи) уже не сможет вызвать фотоэффекта (что подтверждают и опыты). Максимальный радиус орбиты составляет порядка радиуса атома
R10
–10м. Так что, красная граница фотоэффекта будет лежать в области частот
f
кр
=h/2
2
R
2
M10
15Гц, но это есть видимый свет. И во внешнем фотоэффекте красная граница действительно соответствует видимому свету. Считают, что это связано с наличием работы выхода — минимальной энергией
A, которую должен затратить электрон, дабы покинуть металл (§ 4.12). Тогда наименьшая частота света (красная граница), выбивающего электрон
f
кр
=A/h. Но, не исключено, что красная граница и работа выхода связаны со свойствами самих атомов, а не металла. Тому есть подтверждения.Так, самую длинноволновую красную границу имеют щелочные металлы, что естественно, поскольку у них наибольшие атомные радиусы
R. У этих металлов красная граница расположена в диапазоне видимого света, а предельная длина волны =
с/f
кррастёт с ростом атомного радиуса. У металлов же с меньшими атомными радиусами, красная граница расположена в области ультрафиолета (Таблица 8). Выходит, и красная граница, и сама работа выхода заданы свойствами атомов, а не металла в целом. И это естественно, ведь металл — это, по сути, одна гигантская молекула, — много атомов, слившихся воедино: их электроны обобщены. А работа выхода — это энергия ионизации такой молекулы, пропорциональная энергии ионизации её атомов.И, точно, у металлов с наименьшей энергией ионизации
E
и,— у щелочных металлов, — минимальна и работа выхода
A, и эти энергии растут с уменьшением атомного радиуса (Таблица 9). Почему-то этот факт, загадочный с точки зрения квантовой теории, игнорируют, хоть и отмечают, что красная граница тем дальше сдвинута в сторону длинных волн, чем электроположительней атомы металла, то есть, — чем легче они отдают свои электроны [74]. К вопросу о природе работы выхода ещё вернёмся и обсудим её подробней (§ 4.12).Итак, волновой подход не уступает квантовому, позволяя наглядно объяснить гораздо больше эффектов, прежде казавшихся совершенно загадочными. Волновая теория более удобна и для объяснения комптон-эффекта и рождения электрон-позитронных пар под действием гамма-излучения. Почему же не откажутся от квантового объяснения со всей его несуразностью? Первая причина состоит в игнорировании альтернативных подходов (путь, открытый Планком, давно забыт). Вторая причина — в упорном нежелании академических кругов подвергать сомнению основы квантовой механики, ведь фотоэффект — её фундамент. Поэтому, представители официальной науки всеми правдами и неправдами скрывают альтернативные пути и проблемы квантовой теории фотоэффекта. Это замалчивание, скрытое противостояние классической и неклассической физики, — восходит корнями к началу XX века, к тому же Столетову, с внезапной смертью которого связана тёмная история, каких немало в науке.