Читаем Баллистическая теория Ритца и картина мироздания полностью

Рассмотренный механизм образования фотоэлектронов приводит к выводу, что фотоэффект можно наблюдать лишь в некотором диапазоне частот. Раз энергия электрона E=MV 2/2 =hf, а его скорость связана с радиусом орбиты Rзависимостью V=2 Rf, то f=h/2 2 R 2

M. Но радиус Rорбиты электрона в атоме не может быть ни слишком велик, ни слишком мал, а, значит, и диапазон частот излучения, выбивающего электроны, ограничен сверху и снизу. Электрон не должен находиться слишком близко к ядру, где кулоновское притяжение ядра преобладает над магнитной силой (как показывает опыт Резерфорда). Внешний электрон обязан располагаться за сферой внутренних, узловых электронов, экранирующих заряд ядра. Это даёт синюю границу фотоэффекта. С другой стороны, радиус орбиты не может быть больше размеров атома: вне атомного остова магнитное поле быстро спадает, и атом в этой области не может удержать электроны на орбите. Так что, и для внутреннего фотоэффекта, где электрон остаётся в образце и ему не надо совершать работу выхода, должна быть красная граница фотоэффекта: свет с частотой меньшей f=h/2 2 R 2 M— неэффективен ( R— радиус атома). И такая красная граница обнаружена.

Интересно рассчитать эти границы, зная минимальный rи максимальный R

радиусы орбиты электрона (Рис. 151). Минимальный радиус должен быть порядка сотни радиусов ядра, то есть электроны вряд ли могут располагаться ближе r10 –13м. Отсюда, — максимальная частота f=h/2 2 r 2 M10 21Гц. Поэтому, излучение с частотой много большей 10 21Гц (жёсткие гамма-лучи) уже не сможет вызвать фотоэффекта (что подтверждают и опыты). Максимальный радиус орбиты составляет порядка радиуса атома R
10 –10м. Так что, красная граница фотоэффекта будет лежать в области частот f кр =h/2 2 R 2 M10 15Гц, но это есть видимый свет. И во внешнем фотоэффекте красная граница действительно соответствует видимому свету. Считают, что это связано с наличием работы выхода — минимальной энергией A
, которую должен затратить электрон, дабы покинуть металл (§ 4.12). Тогда наименьшая частота света (красная граница), выбивающего электрон f кр =A/h. Но, не исключено, что красная граница и работа выхода связаны со свойствами самих атомов, а не металла. Тому есть подтверждения.

Так, самую длинноволновую красную границу имеют щелочные металлы, что естественно, поскольку у них наибольшие атомные радиусы R. У этих металлов красная граница расположена в диапазоне видимого света, а предельная длина волны = с/f кррастёт с ростом атомного радиуса. У металлов же с меньшими атомными радиусами, красная граница расположена в области ультрафиолета (Таблица 8). Выходит, и красная граница, и сама работа выхода заданы свойствами атомов, а не металла в целом. И это естественно, ведь металл — это, по сути, одна гигантская молекула, — много атомов, слившихся воедино: их электроны обобщены. А работа выхода — это энергия ионизации такой молекулы, пропорциональная энергии ионизации её атомов.

И, точно, у металлов с наименьшей энергией ионизации E и,— у щелочных металлов, — минимальна и работа выхода A, и эти энергии растут с уменьшением атомного радиуса (Таблица 9). Почему-то этот факт, загадочный с точки зрения квантовой теории, игнорируют, хоть и отмечают, что красная граница тем дальше сдвинута в сторону длинных волн, чем электроположительней атомы металла, то есть, — чем легче они отдают свои электроны [74]. К вопросу о природе работы выхода ещё вернёмся и обсудим её подробней (§ 4.12).

Итак, волновой подход не уступает квантовому, позволяя наглядно объяснить гораздо больше эффектов, прежде казавшихся совершенно загадочными. Волновая теория более удобна и для объяснения комптон-эффекта и рождения электрон-позитронных пар под действием гамма-излучения. Почему же не откажутся от квантового объяснения со всей его несуразностью? Первая причина состоит в игнорировании альтернативных подходов (путь, открытый Планком, давно забыт). Вторая причина — в упорном нежелании академических кругов подвергать сомнению основы квантовой механики, ведь фотоэффект — её фундамент. Поэтому, представители официальной науки всеми правдами и неправдами скрывают альтернативные пути и проблемы квантовой теории фотоэффекта. Это замалчивание, скрытое противостояние классической и неклассической физики, — восходит корнями к началу XX века, к тому же Столетову, с внезапной смертью которого связана тёмная история, каких немало в науке.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже