Читаем Баллистическая теория Ритца и картина мироздания полностью

Лазеры стали важнейшей составляющей современной науки, техники и быта. Поэтому особенно обидно, что эти генераторы света, вопреки идеям их создателей, называют квантовыми генераторами, а саму лазерную физику — квантовой электроникой. На деле, лазерное излучение, как видели (§ 4.5), не стоит связывать с квантами и фотонами, ведь лазер — это просто высокодобротный оптический резонатор и усилитель, который избирательно усиливает одни волны и гасит другие, подобно акустическому, выделяя заданные частоты и фазы колебаний. Происходит, по сути, такая же, как в опыте Франка-Герца, перекачка энергии, запасённой во внешних электронах атома, частота колебаний которых не фиксирована и превышает основную частоту f, — к узловым, внутренним электронам, колеблющимся и излучающим на этой стандартной частоте f. Именно это и позволяет трансформировать разные виды энергий накачки — в когерентный свет, с его жёстко заданной фазой и частотой. А стандарт этой частоты задан отнюдь не квантами и дискретными значениями энергии атома, а кристально чёткой пространственной структурой атома, с твёрдым масштабом расстояний и констант радиуса r 0, магнитного момента и заряда

eэлектрона (§ 3.1).

Лазер — это чисто классический прибор, в котором происходит нелинейное взаимодействие электромагнитных волн и колебаний атомных электронов. За счёт этого, энергия электронов, вибрирующих с разными частотами и фазами, и преобразуется в энергию колебаний электронов на стандартной частоте fлазерного излучения. Этот процесс уже давно описан в классической, хоть и нелинейной теории колебаний [103], а фотонами и квантами здесь, как говорится, "и не пахло". Сначала оптическое излучение накачки (скажем, от лампы-вспышки) возбуждает колебания внешних и внутренних электронов атома на множестве собственных частот, причём на некоторой частоте fколебания возбуждаются особенно эффективно. Электроны, вибрирующие с частотой f, теряют энергию медленней, чем получают её от взаимодействия с другими электронами и излучёнными ими волнами. Поэтому, при некоторой интенсивности излучения, превышающей пороговую, колебания электронов на частоте f

будут усиливаться, за счёт энергии всех прочих колебаний, переходящей в энергию колебаний и излучения на основной частоте f.

Как следует из соотношений Мэнли-Роу [103], такая перекачка энергии эффективна лишь в случае, если высокочастотное излучение преобразуется в низкочастотное. Вот почему, излучение накачки обязательно должно иметь частоту f p— большую, чем частота fизлучения лазера, хотя здесь играет роль и постепенное расширение витков орбиты внешних электронов, передающих свою энергию узловому электрону, при снижении частоты их колебаний с f pдо

f. То есть, здесь ни при чём обычное объяснение, по которому энергия кванта излучения лазера E=hfне может быть больше энергии кванта накачки E p=hf p. Совершенно излишне здесь и представление об инверсии населённостей уровней атома, ибо порог генерации задаётся балансом скорости притока и оттока энергии основных колебаний электронов на частоте f
. Так что, "квантовые" генераторы и усилители работают исключительно по классическим принципам теории колебаний и волн, не требуя квантовых. В некоторых типах лазеров, например в полупроводниковых, газовых и некоторых других, механизм перекачки энергии может иметь и более сложный, но, всё равно, — классический характер. В этих случаях, генерация лазерного излучения может идти примерно так. При накачке (скажем электрическим разрядом) атомы, а, точнее, — их внешние электроны, набирают энергию. Одновременно возбуждаются и внутренние электроны в узлах, которые генерируют пока ещё некогерентное, но уже имеющее стандартную частоту fизлучение (могут присутствовать и другие частоты спектра, которые усиливаются и излучаются гораздо хуже).

Это излучение, проходя сквозь атомы, заставляет их, по спусковому механизму фотоэффекта, выбрасывать те внешние электроны, что крутятся с той же частотой f(в отличие от внутренних электронов, они излучают очень слабо, поскольку имеют гораздо меньшие значения скоростей и ускорений, § 3.2). Тогда, атом испытывает отдачу, отчего происходит взбалтывание его узловых электронов, особенно электронов с частотой собственных колебаний f, так же как в опыте Франка-Герца. Поэтому, они сами начинают генерировать излучение f, причём, — в той же фазе, что и падающий свет, поскольку их колебания запущены синхронным с падающей волной внешним электроном (Рис. 160). Его рывок-отдача не только запускает колебания внутреннего электрона, но и синхронизует их с падающим светом.

Рис. 160. Генерация лазерного света: набор электроном энергии в поле E разряда, его захват и выброс атомом от фотоэффекта.


Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже