Выше было показано, как баллистическая теория позволяет дать простое и естественное объяснение красному смещению и реликтовому излучению. Кроме того, именно в рамках этой классической концепции удаётся теоретически рассчитать значения постоянной Хаббла и температуры реликтового излучения. Таким образом, видим, что Вселенную следует считать стационарной, существующей вечно и имеющей неограниченную протяжённость. Ограниченность Вселенной в пространстве и во времени, как справедливо заметил Циолковский, неизбежно приводит к религиозным, псевдонаучным моделям мира, типа гипотезы Большого взрыва. Но, как говорится, нет пророка в отечестве своём. И, даже в СССР, где ракетные заслуги Циолковского признавались и высоко ценились, на его физические и космологические взгляды не обращали внимания, предпочитая им абсурдную космологию и физику Эйнштейна. Модель вечной, стационарной Вселенной поддерживали многие прогрессивные учёные: Демокрит, И. Кеплер, Джордано Бруно, А. Белопольский, С. Аррениус. А в настоящее время поддержку и развитие теории стационарной Вселенной обычно связывают с именем известного американского астрофизика Фреда Хойла [67].
Однако теория Большого взрыва, при активной поддержке церкви и академических кругов, практически совершенно вытеснила теорию стационарной Вселенной. А, между тем, именно эта теория стабильного мироздания выглядит наиболее оптимистичной и рациональной, поскольку утверждает вечную жизнь и вечную молодость Вселенной, как образно выразился Циолковский. В самом деле, если принять теорию Большого взрыва, то выходит, что у нашего мира было рождение, начало во времени, а, значит, будет и конец света. Эта пессимистическая гипотеза получила название тепловой смерти Вселенной, — того же конца света от потухания звёзд и равномерного распределения тепла. Ибо, если энтропия мира только нарастает, то рано или поздно мир придёт в максимально усреднённое и разупорядоченное состояние с максимумом энтропии, когда вся энергия Вселенной, звёзд преобразуется, наконец, в тепло. Обратное же преобразование, как гласит второй закон термодинамики, невозможно. Это и есть тепловая смерть Вселенной, — библейский "конец света".
Реально же, всё могло бы завершиться тепловой смертью мира только в случае ограниченной в пространстве и времени Вселенной. Ведь второе начало термодинамики, как предполагают, выполняется лишь для замкнутых, ограниченных систем, к которым по теории относительности и Большого взрыва относится и наша Вселенная. Если же Вселенная безгранична, бесконечна в пространстве и времени, то её совсем не обязательно ждёт смерть, ибо для открытых систем закон увеличения энтропии, как предполагают, не выполняется. А потому наш мир должен жить вечно и, даже, более того, — не стареть со временем, а, точнее, стареть и параллельно омолаживаться. Именно в таком ключе Демокрит, Бруно и Циолковский понимали вечную молодость Вселенной. И их точка зрения нашла подтверждение в открытом В. Амбарцумяном факте рождения, образования свежих звёзд, идущего одновременно с неизбежным выгоранием и угасанием, отмиранием старых звёзд. А раз звёзды и галактики продолжают появляться, то глупо считать, что все они родились одновременно в едином акте творения и все однажды умрут. Другой факт, отвергающий рождение и тепловую смерть мира, — это открытие звёзд и скоплений, появившихся, судя по оценке их возраста, за многие миллиарды лет до расчётного момента Большого взрыва [87].
Чтобы пояснить антиэнтропийный механизм созидания звёзд, восстановления порядка из хаоса, рассмотрим известную иллюстрацию энтропийного разупорядочения. Возьмём два сообщающихся сосуда с водой, труба между которыми перекрыта краном. Растворим в правом сосуде щепоть медного купороса, который придаст раствору синий цвет. Затем откроем кран и будем наблюдать, как с течением времени постепенно синеет вода в левом сосуде за счёт диффузии в него атомов меди. В итоге, синяя окраска распределится равномерно по обоим сосудам. Это и есть процесс роста энтропии: система из организованно неоднородного, неравновесного состояния пришла в усреднённое, предельно беспорядочное, равновесное состояние. С точки зрения механики, ничто не запрещает системе вернуться в исходное упорядоченное состояние. Если записать микрофильм о движении атомов при диффузии, то, прокручивая его в обратную сторону, не обнаружим никакого противоречия с законами механики. Движение и столкновение частиц — процессы симметричные во времени. Однако, в жизни нельзя увидеть, чтобы равномерно распределённая по жидкости окраска собралась снова в одном сосуде, и все атомы меди вернулись в правый сосуд. Связано это с тем, что необратимый рост энтропии имеет вероятностный характер: система переходит из менее вероятного в более вероятное состояние чаще, чем обратно. А вероятность того, что все молекулы купороса окажутся в правом сосуде, — много меньше вероятности их присутствия в обоих сосудах в почти равной пропорции. Потому-то мы и наблюдаем в жизни рост энтропии.