Дело в том, что свет и реоны имеют постоянную скорость лишь относительно испустивших их источников, — электронов. Но электроны в источниках излучения (в антеннах или в атомах) сами движутся, колеблются, и, по баллистическому принципу, скорость их добавляется к световой скорости выстреливания реонов. Рассмотрим реоны, испущенные в направлении, перпендикулярном плоскости электронной орбиты атома (Рис. 62). Так они полетят, если электрон, движущийся по орбите со скоростью v
, будет выстреливать реоны не точно в заданном направлении OA, а под небольшим аберрационным углом в сторону против своего движения, чтобы скомпенсировать его скорость (как в случае с аберрацией звёздного света, § 1.9). Результирующая скорость реонов (и света) c'=(c2-v2)1/2 всегда чуть меньше скорости их выстреливания c.Рис. 62. Орбитальная скорость v электрона, складываясь со скоростью c выстреливаемых им реонов, даёт скорость c', направленную вдоль OA.
Это приведёт к следующему любопытному эффекту: поскольку, как показывает хотя бы фотоэффект (§ 4.3), скорость v
электрона в атоме тем больше, чем выше частота его колебаний (равная частоте испускаемого атомом света § 3.1), то с ростом частоты света уменьшается скорость его распространения c'=(c2-v2)1/2. Считается, что такого рода явление зависимости скорости света от его частоты, называемое "дисперсией" (именно она ответственна за разложение призмой света в цветную полоску спектра), возможно только в среде. Но, если верно сказанное, то дисперсия присуща свету изначально и должна наблюдаться даже в вакууме.Именно такое явление, основываясь на баллистической теории, но из других соображений, предсказал С.П. Масликов (см. журнал «Физическая мысль России», 1998 г., № 1 и [81]). Правда, скорость v
электронов обычно много меньше скорости света c, и у разных лучей скорости c΄ будут очень мало отличаться и от c и друг от друга. То есть дисперсия в вакууме будет ничтожна. Но, как верно заметил Масликов, эффект должен отчётливо проявиться на огромных космических расстояниях, где даже ничтожная разница в скорости красных и синих лучей приведёт к заметному запаздыванию во времени последних. Этим Масликов объясняет некоторые космические загадки, например несовпадение моментов оптических, рентгеновских и радио-вспышек одних и тех же космических объектов. Явление космической дисперсии (опережения в космосе красными лучами синих), как следует из биографии П.Н. Лебедева [133, с. 157], известно уже более века. Это явление исследовал так же уже упоминавшийся А.А. Белопольский [17]: космическую дисперсию открыл один из его учеников, склонявшийся к мысли, что эффект вызван всё же различием скоростей. Однако, учёные отказались признать этот эффект и либо старательно о нём умалчивают, поскольку объяснить его не могут, либо находят весьма сомнительные объяснения. А с позиций БТР легко объяснить и эффект космической дисперсии и более того применить этот эффект, по предложению С.П. Масликова, — для определения расстояний в Космосе (§ 2.13).В самом деле, согласно С. Масликову, измерив задержку между приходом синих и красных лучей от вспыхнувшего объекта и зная разницу скоростей этих лучей в космосе, можно легко определить, на каком расстоянии эта разность хода набралась, то есть, — определить расстояние до объекта. Впрочем, при рассеянии света газовыми средами, если таковые встретятся на пути, информация о скорости источника должна теряться, как показал Дж. Фокс (§ 1.13). А, потому, скорости синих и красных лучей будут постепенно выравниваться. Таким образом, космическая дисперсия либо исчезла бы вовсе, либо заметно ослабилась. Но, не исключено, что рассеяние вообще не повлияет на величину эффекта, поскольку рассеивающие атомы так же испускают свет разных частот с разными скоростями. Если не считать этого возможного недочёта, такой метод определения расстояний был бы намного проще и точней всех известных на сегодняшний момент. Как видим, баллистическая теория не только легко и красиво объясняет многие явления космоса, но и даёт в руки астрономам много новых орудий его познания и измерения.