Соответственно, характерные частоты
Рассмотренный механизм генерации ядерных спектров, судя по всему, не единственный, поскольку ядра излучают не только от возбуждения ударами, но и при возбуждении в процессе ядерных реакций и при спонтанном переходе из одного состояния в другое. Такое гамма-излучение генерируют, вероятно, уже не колебания отдельных протонов, а колебания отдельных частей ядра, имеющие, подобно колебаниям молекул или грузов на пружинке, жёстко заданные частоты, о чём будет рассказано ниже (§ 3.13). Излучение ядер может возникать и от резкого торможения соударяющихся ядер, в случае неупругого удара, порождая огромные ускорения. А ускоренно движущееся заряженное ядро, по законам электродинамики, должно излучать электромагнитную энергию. Тогда, вся кинетическая энергия сталкивающихся ядер может преобразоваться в энергию излучения, отчего такой удар и называют неупругим.
Возникает гамма-излучение и при перестройке протон-нейтронной структуры, то есть, при спонтанном переходе из менее устойчивого структурного состояния — в более устойчивое. Как было показано в предыдущем разделе (§ 3.6), нуклоны могут располагаться в ядре различным образом. При этом, разным способам размещения соответствует разная энергия связи, так что переход из одного состояния в другое, более устойчивое, сопровождается выделением соответствующей энергии в виде гамма-излучения. Ведь, при такой перестройке ядра, перемещаемые нуклоны механически встряхиваются, начиная колебаться в магнитном поле ядерного остова, излучая гамма-лучи. Причём, для каждого ядра, для каждой реакции, опять же, свойственны свои характерные частоты излучения. По аналогии с атомами, ядра на тех же частотах сильнее всего и поглощают излучение. Такая строгая индивидуальность, жёсткая определённость частот гамма-излучения, аналогичная наличию характерных линий в атомных спектрах, находит применение на практике, в качестве эталонных частот, для сравнения параметров излучателя и поглотителя и выявления ничтожных сдвигов частоты, вызванных движением источника и релятивистскими эффектами. Чаще всего, применяют упомянутый эффект Мёссбауэра, измеряя степень поглощения гамма-излучения от источника поглотителем. Эффект Мёссбауэра позволяет выявлять тончайшие сдвиги частоты от движения источника и поглотителя и других влияющих на частоту эффектов.
Кстати, в эффекте Мёссбауэра сталкиваемся с ещё одним провалом квантовой теории, которая предсказывала, что эффект не может наблюдаться ввиду большого импульса отдачи, получаемого ядром при испускании гамма-кванта и меняющего частоту излучения, исключая его резонансное поглощение другим ядром [135]. Но, вопреки квантовой теории, эффект Мёссбауэра всё же был открыт на опыте, в очередной раз посрамив кванторелятивистов и доказав, что излучение исходит не отдельными порциями-квантами, а — классической сферической волной, симметрично расходящейся во все стороны и потому не вызывающей отдачи. Также, именно эффект Мёссбауэра позволяет установить важную связь строения молекул, атомов, их электронных оболочек и оптических спектров — с ядерными свойствами этих атомов и спектром их гамма-излучения, о чём говорилось выше (§ 3.6) и ещё будет сказано ниже (§ 4.16).
§ 3.8 Состав и масса элементарных частиц
Последовательная теория элементарных частиц, которая предсказывала бы возможные значения масс элементарных частиц и другие их внутренние характеристики, ещё не создана.