Видим, что механизм выделения энергии в ядерных реакциях не имеет отношения к СТО и потере массы. Энергия и масса — разные понятия. Как открыл Ломоносов, отдельно сохраняется масса, отдельно энергия, они не исчезают и не возникают, а лишь передаются, соответственно, — в виде частиц и их движения от одних тел другим. Почему же тогда работает формула СТО, и потеря массы m
в ядерной реакции приводит к выделению энергии E=mc2? Мы видели, что "потеря" массы, как в химической реакции, связана с уходом трудноуловимых, незаметных частиц. Так, в реакции синтеза ядра, набрав большие энергии в ходе сближения, соударяются неупруго: вся их энергия идёт на выбивание из ядра мелких осколков. Эти осколки-частицы и уносят избыточную энергию ядра, которую передают окружающим телам в форме тепла. Если же соударение упругое, то образованное ядро переходит в возбуждённое состояние. Тогда его части колеблются: после удара ядра отскакивают, затем снова сходятся и т. д., пока не истратят всю энергию на излучение, сопровождающее любые колебания зарядов. Это даёт ещё один механизм генерации γ-излучения возбуждённых ядер (§ 3.7).Итак, "потеря" массы связана с уходом нейтральных частиц. Чем больше энергия E
соударения ядер, тем больший кусок они друг из друга выбьют. То есть, чем выше энерговыделение E реакции, тем больше теряемая ядрами масса m. Это подобно высеканию искры двумя кремнями: чем с большей силой и скоростью их сшибаешь, тем больше вылетает осколков-искр и тем они ярче, горячей, энергичней. Поскольку скорость V лёгких трудноуловимых частиц, вылетающих из ядер, обычно близка к скорости света c, то их кинетическая энергия E=mV2/2 — порядка mc2. Отсюда — соответствие между теряемой массой m и выделяемой энергией E=mc2, хотя и не вполне строгое. Но, ведь, и в опыте физики обычно не могут точно измерить энергию одной ядерной реакции, имея дело с ансамблями частиц, число которых не известно, да и энергия не всегда точно измерима. Итак, в рамках классической физики тоже есть соответствие между выделяемой энергией E и теряемой массой m в виде соотношения E=mc2, но смысл его — иной, чем в СТО, и оно отнюдь не такое строгое.В реакциях распада выделение энергии тоже сопровождается потерей массы. Ведь, при делении ядра кроме двух дочерних ядер должны вылетать и совсем мелкие осколки. Аналогично, если разбить кирпич ударом на половинки, то, кроме них, останутся и мелкие крошки, осколки. Так же и при отрыве капель жидкости, — кроме основной капли, в перетяжке всегда отделяется и крошечный шарик Плато (Рис. 130). Поэтому, если уж следовать капельной модели ядра, физикам следовало принять, что такая же мелкая капля-частица образуется при делении ядер. Эта частица и уносит "пропавшую" массу. В случае деления тяжёлых ядер, эта частица — нейтрон (если его реальная масса чуть выше принятой, это и породит иллюзию исчезновения массы в реакции, § 3.15). В случае α-распада таких частиц вообще не обнаружили, хотя по капельной модели ядра они тоже должны бы быть. Понятно, почему и здесь масса m
теряемой частицы соотносится с энергией распада: чем больше энергия деления E, чем мощней удар, сотрясающий и разрушающий частицу, тем массивней вылетающие осколки.Рис. 130. Деление капель (или ядер) с образованием шарика Плато (частицы) из перетяжки [135].
Впрочем, всё это относилось к реакциям, а ядра обладают определённой массой, не зависящей от того, каким путём, — делением или синтезом, — они получены. Теряемый в реакциях вес (дефект массы) — это лишь разница масс исходных и конечных ядер. Значит, что-то задаёт устойчивую массу ядра, а, при делении или синтезе, ядро лишь сбрасывает лишнюю массу-балласт в виде частиц. Что же это за частицы? Вероятно, это упомянутые ранее гаммоны (§ 3.8). Ведь типичный дефект масс составляет около 0,04 масс протона (или кратную величину), то есть порядка 70me
, а это близко к массе гаммона в 66me, так же бесследно исчезающей в реакциях с элементарными частицами. Почему же теряется всегда одна и та же масса, а ядра имеют стандартный вес? Ответ прост: каждое ядро состоит из определённого числа стандартных частиц, имеющих постоянную массу. И, точно, любое ядро состоит из нейтронов и протонов, однако сумма их масс никогда не равна массе образуемого ими ядра, — эту разницу и назвали "дефектом массы". По закону сохранения массы, этого не может быть, — частицы после слияния должны вместе весить столько же, сколько и до. Значит, в ядре есть и другие частицы. Действительно, мы выяснили, что ядро — это не одни голые протоны и нейтроны: в ядре эти частицы уложены, как в кульке, в бипирамидальном остове, каркасе (§ 3.3), вероятно, тоже имеющем стандартный вес, который надо учитывать. Иными словами масса ядра — это вес брутто (товар с упаковкой), а сумма масс протонов и нейтронов — это вес нетто (чистый вес, без тары).