Читаем Баллистическая теория Ритца и картина мироздания полностью

Для электрона в потоке реонов (от неподвижного электрона) скорость частиц V=c, а S — площадь поперечного сечения электрона, откуда

F = np = kcSp = kc2Sm.

С удалением от электрона концентрация k выстреленных им реонов убывает пропорционально квадрату расстояния (Рис. 11). Отсюда, как выяснили выше, и следует закон Кулона: сила F отталкивания электронов спадает, пропорциональна квадрату расстояния между ними (§ 1.4).


Рис. 11. Один электрон действует на другой через посредство выстреливаемых им реонов R, воздействие которых спадает вместе с их концентрацией k пропорционально квадрату расстояния.


Так теория Ритца объясняет силу электростатического взаимодействия зарядов. Ну а магнитные силы возникают, как известно, от движения электрических зарядов. Физики говорят, что в зависимости от движения зарядов их электрическое поле преобразуется в магнитное и наоборот (поэтому говорят об электромагнитном поле, считая электричество и магнетизм лишь различными его проявлениями). Но как происходит этот переход, почему его вызывает движение зарядов, и что вообще такое магнетизм, современная физика объяснить не может. Теория же Ритца даёт на это простой и ясный ответ.

Выше было показано, что два неподвижных заряда взаимодействуют с силой F= kc2Sm. Теория Ритца предсказывает изменение этой силы при сближении зарядов. Если один заряд движется, закон Кулона оказывается не вполне точен, что связано с конечной скоростью света, реонов, переносящих электрическое воздействие. В самом деле, пусть электрон, испускающий реоны, покоится, а другой движется ему навстречу со скоростью v. В таком случае скорость потока V, с которой реоны ударяются об электрон, согласно классической механике, будет равна уже не c, но V=c΄=c+v

. Соответственно вырастет и импульс, передаваемый реонами электрону и частота их ударов, а, в конечном счёте, и сила отталкивания одного электрона другим. Из-за увеличения скорости V встречного потока реонов от c до c΄=c+v получим F= k(c+v)2Sm. Сила вырастет по сравнению с той, что испытывали бы покоящиеся заряды на том же удалении. Напротив, расхождение зарядов уменьшит эту силу. Именно это небольшое изменение силы электростатического взаимодействия и воспринимается нами как магнитное воздействие. Причину этих изменений поясняет баллистическая модель: броневик, расстреливающий неподвижную мишень, увеличивает свою огневую мощь, когда быстро едет навстречу цели (Рис. 12). Ведь при движении к мишени растёт частота ударов и скорость пуль, а значит и сила ударов по мишени: пули барабанят по мишени чаще и сильнее. Ещё заметней будет эффект для пулемёта, установленного на самолёте, скорость которого уже сравнима со скоростью пуль.


Рис. 12. Подобно огневой силе движущегося броневика, повышена сила F взаимодействия сближающихся со скоростью v зарядов за счёт выросшей скорости c'=c+v и частоты ударов реонов R.


Далее рассмотрим заряженную нить и возле неё в т. O заряд q. Сила отталкивания заряда от нити

F= qτ/2πε0r,

где τ — линейная плотность заряда нити, r — расстояние от заряда до нити, а ε0 — электрическая постоянная. Сила же взаимодействия заряда с малым участком нити M длиной dl

, имеющим заряд τdl, даётся законом Кулона

F = qτdl/4πε0OM2.

Перпендикулярная нити составляющая этой силы выразится через углы φ и как

Fу= qτcos(φ)dφ/4πε0r (Рис. 13).

Найдём, как изменится сила при движении заряда параллельно нити со скоростью v. По отношению к движущемуся заряду встречные реоны будут иметь скорость отличную от c за счёт векторного вычитания из c

скорости
v заряда. И направлена скорость
реонов будет уже не вдоль
MO, а вдоль M΄O (ту же природу имеет звёздная аберрация — отклонение световых лучей, вызванное движением Земли, § 1.9). Из треугольника скоростей OMM΄:

c΄= [c2+v2–2cvsin(φ)]1/2

или, разлагая в ряд и считая v/c малым, получим

c΄≈ с[1–sin(φ)v/c+(v/c)2cos2(φ)/2].

Соответственно меняется и сила:

F΄=F(c΄/c)2.

Но, поскольку сила меняет и направление ( действует вдоль

), то интересующая нас составляющая
Fу изменится в несколько меньшей степени:

Fу΄= Fу(c΄/c) = [1–sin(φ)v/c+ (v/c)2cos2(φ)/2]cos(φ)dφqτ/4πε0r.

Остаётся найти суммарную силу воздействия на заряд со стороны всех элементов нити, проинтегрировав Fу΄ в пределах φ от — π/2 до +π/2. В итоге, полная сила

Fу΄= (1+v2/3c2)qτ/2πε0r= qτ/2πε0r+v2qτ/6πε0rc2.

Перейти на страницу:

Похожие книги

Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Стратегические операции люфтваффе
Стратегические операции люфтваффе

Бомбардировочной авиации люфтваффе, любимому детищу рейхсмаршала Геринга, отводилась ведущая роль в стратегии блицкрига. Она была самой многочисленной в ВВС нацистской Германии и всегда первой наносила удар по противнику. Между тем из большинства книг о люфтваффе складывается впечатление, что они занимались исключительно поддержкой наступающих войск и были «не способны осуществлять стратегические бомбардировки». Также «бомберам Гитлера» приписывается масса «террористических» налетов: Герника, Роттердам, Ковентри, Белград и т. д.Данная книга предлагает совершенно новый взгляд на ход воздушной войны в Европе в 1939–1941 годах. В ней впервые приведен анализ наиболее важных стратегических операций люфтваффе в начальный период Второй мировой войны. Кроме того, читатели узнают ответы на вопросы: правда ли, что Германия не имела стратегических бомбардировщиков, что немецкая авиация была нацелена на выполнение чисто тактических задач, действительно ли советская ПВО оказалась сильнее английской и не дала немцам сровнять Москву с землей и не является ли мифом, что битва над Англией в 1940 году была проиграна люфтваффе.

Дмитрий Владимирович Зубов , Дмитрий Михайлович Дегтев , Дмитрий Михайлович Дёгтев

Военное дело / История / Технические науки / Образование и наука
Городской Пассажирский Транспорт Санкт-Петербурга: Политика, Стратегия, Экономика (1991-2014 гг.)
Городской Пассажирский Транспорт Санкт-Петербурга: Политика, Стратегия, Экономика (1991-2014 гг.)

Монография посвящена актуальным вопросам регулирования развития городского пассажирского транспорта Санкт-Петербурга. Рассматриваются вопросы реформирования городского пассажирского транспорта в период с 1991 по 2014 годы. Анализируется отечественный и зарубежный опыт управления, организации и финансирования перевозок городским пассажирским транспортом. Монография предназначена для научных работников и специалистов, занимающихся проблемами городского пассажирского транспорта, студентов и аспирантов, преподавателей экономических вузов и факультетов, предпринимателей и руководителей коммерческих предприятий и организаций сферы городского транспорта, представителей органов законодательной и исполнительной власти на региональном уровне. Автор заранее признателен тем читателям, которые найдут возможным высказать свои соображения по существу затронутых в монографии вопросов и укажут пути устранения недостатков, которых, вероятно, не лишена предлагаемая работа.

Владимир Анатольевич Федоров

Экономика / Технические науки / Прочая научная литература / Внешнеэкономическая деятельность