Читаем Баллистическая теория Ритца и картина мироздания полностью

Поэтому я буду допускать, что любая заряженная точка испускает в каждый момент времени по всем направлениям фиктивные частицы, бесконечно малые и запущенные при рождении с одинаковой радиальной скоростью c, которые сохраняют своё равномерное движение, независимо от того, какие им встречаются тела.

Вальтер Ритц, "Критический анализ общей электродинамики" [8]

Первый постулат теории относительности о равноправии инерциальных систем, в том числе, для явлений оптики и электродинамики, — не вызывает сомнений. Однако второй постулат — о независимости скорости света от взаимного движения источника и наблюдателя — не только не доказан опытом, но и противоречит первому (отсюда все парадоксы СТО). Ведь равноправие всех систем вытекает именно из классического закона сложения скоростей. Как показал ещё Галилей, падение тел внутри стоящего и плывущего корабля потому идентично, что, в случае движения, падающим телам сообщается скорость корабля (Рис. 37). То же свойство обнаружилось у света: для него, как показали опыты Майкельсона и аберрация звёздного света, работало классическое правило сложения скоростей (принятое в БТР). Майкельсон, закончивший военно-морскую академию и сам много плававший, по сути, повторил опыт Галилея с кораблём, но использовал в качестве судна саму Землю, а в качестве брошенного тела — свет. Из этих опытов следовала относительность движения света и первый постулат СТО (на деле просто принцип относительности Галилея). Второй же постулат, напротив, абсолютизировал движение света, будто на его скорость c не влияло относительное движение источника и наблюдателя. Не зря Макс Планк называл теорию относительности "теорией абсолютности".


Рис. 37. Движение корабля (амфибии) передаётся падающему телу, которое, как внутри покоящейся системы, падает по вертикали. Та же скорость передаётся свету и снарядам (для берегового наблюдателя).


До сих пор, рассуждая о баллистическом принципе сложения скорости света со скоростью источника, мы говорили о движении света в вакууме. Если же электромагнитная волна летит в среде, то, как было отмечено выше, ситуация кардинально меняется: проходя через среду, будь то воздух или плотные тела, волна воздействует на электроны среды, приводя их в колебания, отчего те излучают вторичные волны, которые, слагаясь с исходной, рождают явления рефракции, дисперсии и дифракции. Поэтому, возникает уже избранная система отсчёта, связанная с материальной средой. Описание волн в такой среде во многом подобно описанию их с помощью эфира. Вот почему теория Максвелла, основанная на эфире, всё ещё используется, не обнаруживая расхождений с опытом. Однако, в космосе, в безвоздушном пространстве, — возникают отклонения от теории Максвелла. Судя по результатам радиолокации и астрономических наблюдений, исчезает преимущественная система отсчёта, связанная с атмосферой, и скорость света начинает зависеть от скорости источника (Часть 2).

В данном разделе нас будут интересовать именно опыты в земных лабораториях, где свет движется в среде. Так, в качестве противоречащего БТР иногда приводят известный опыт по влиянию движения источника на скорость света в среде, — опыт Физо [93, 153]. По его результатам, если источник движется навстречу среде со скоростью V, то в среде фазовая скорость света от этого источника уже не c/n, а c/n+V/n2

. Паули считал это доказательством того, что скорость источника не складывается по классическому закону со скоростью света. Но, как было сказано, баллистический принцип здесь и не обязан работать, ибо скорость света в среде определяется не одним только источником, а ещё и атомами среды, вторичное излучение которых складывается с начальным, образуя новую волну. Вычислим её фазовую скорость [136, с. 425]. Если свет имеет скорость c+V, то поле единичной падающей волны опишется уравнением

E0=ei(ωt — k'x),

где ω — циклическая частота падающей волны, а k'= ω/(c+V

) — её волновое число.

Эта волна возбуждает в среде вторичные волны интенсивности

E1= — ikxbei(ωt — kx) [136],

где k= ω/c —

их волновое число, x — толщина пройденного слоя вещества, излучающего новую волну (Рис. 38), b — безразмерный коэффициент, характеризующий оптическую плотность среды (концентрацию атомов и эффективность переизлучения ими волны с частотой ω). Поле результирующей волны

E= E0+E1= ei(ωt — kx)(eix(k — k')—ikxb),

Перейти на страницу:

Похожие книги

Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Стратегические операции люфтваффе
Стратегические операции люфтваффе

Бомбардировочной авиации люфтваффе, любимому детищу рейхсмаршала Геринга, отводилась ведущая роль в стратегии блицкрига. Она была самой многочисленной в ВВС нацистской Германии и всегда первой наносила удар по противнику. Между тем из большинства книг о люфтваффе складывается впечатление, что они занимались исключительно поддержкой наступающих войск и были «не способны осуществлять стратегические бомбардировки». Также «бомберам Гитлера» приписывается масса «террористических» налетов: Герника, Роттердам, Ковентри, Белград и т. д.Данная книга предлагает совершенно новый взгляд на ход воздушной войны в Европе в 1939–1941 годах. В ней впервые приведен анализ наиболее важных стратегических операций люфтваффе в начальный период Второй мировой войны. Кроме того, читатели узнают ответы на вопросы: правда ли, что Германия не имела стратегических бомбардировщиков, что немецкая авиация была нацелена на выполнение чисто тактических задач, действительно ли советская ПВО оказалась сильнее английской и не дала немцам сровнять Москву с землей и не является ли мифом, что битва над Англией в 1940 году была проиграна люфтваффе.

Дмитрий Владимирович Зубов , Дмитрий Михайлович Дегтев , Дмитрий Михайлович Дёгтев

Военное дело / История / Технические науки / Образование и наука
Городской Пассажирский Транспорт Санкт-Петербурга: Политика, Стратегия, Экономика (1991-2014 гг.)
Городской Пассажирский Транспорт Санкт-Петербурга: Политика, Стратегия, Экономика (1991-2014 гг.)

Монография посвящена актуальным вопросам регулирования развития городского пассажирского транспорта Санкт-Петербурга. Рассматриваются вопросы реформирования городского пассажирского транспорта в период с 1991 по 2014 годы. Анализируется отечественный и зарубежный опыт управления, организации и финансирования перевозок городским пассажирским транспортом. Монография предназначена для научных работников и специалистов, занимающихся проблемами городского пассажирского транспорта, студентов и аспирантов, преподавателей экономических вузов и факультетов, предпринимателей и руководителей коммерческих предприятий и организаций сферы городского транспорта, представителей органов законодательной и исполнительной власти на региональном уровне. Автор заранее признателен тем читателям, которые найдут возможным высказать свои соображения по существу затронутых в монографии вопросов и укажут пути устранения недостатков, которых, вероятно, не лишена предлагаемая работа.

Владимир Анатольевич Федоров

Экономика / Технические науки / Прочая научная литература / Внешнеэкономическая деятельность