Итак, даже согласно СТО, опыт с самолётами не может подтвердить справедливость эффекта замедления времени. Почему же тогда часы шли с разной скоростью, если они равноправны? Всё дело в том, что часы на земле и в самолёте находились, всё же, в неравных условиях, поскольку самолёт, хоть он и летел с постоянной скоростью V
, — двигался ускоренно, ибо летел по дуге большого круга, имеющего радиус Земли R. А такое движение сопровождается ускорением, поскольку меняет скорость по направлению. Это ускорение a=V2/R и вносит асимметрию. Именно ускорение, а вовсе не скорость и приводит к тому, что движущиеся часы идут медленнее. Как было показано в предыдущем разделе, ускорение действительно снижает частоту атомных процессов, но, опять же, не от изменения ритма времени, а от дополнительной силы, действующей на электрон и меняющей частоту его колебаний. То, что дело именно в ускорении, а не в скорости часов подтверждается ещё и тем, что часы, летевшие с запада на восток, отстали заметно сильнее, чем часы, летевшие с востока на запад. Этого не должно было бы случиться: если часы летели в самолётах с одной и той же скоростью, одно и то же время, то, по формуле замедления времени, они бы одинаково отстали. В действительности, это не так, поскольку все трое часов участвовали, кроме того, и во вращательном движении Земли вокруг оси. Пусть самолёты летели со скоростью V, а окружная скорость Земли — v. Тогда для самолёта, летящего с запада на восток, это вращение увеличивало окружную скорость, а значит и ускорение a1=(V+v)2/R, и связанное с ним отставание часов, а для самолёта, летящего в обратную сторону, напротив, — уменьшало a2=(V-v)2/R. Потому и часы на самолётах отстали в разной степени.Согласно ОТО, смещение частоты при вращении есть Δf/f
=aR/2c2. В итоге смещение частоты составит Δf/f=V2/2c2,— такой же сдвиг, какой получается за счёт замедления времени у движущихся со скоростью V часов. Вот и выходит, что согласно ОТО должен наблюдаться такой сдвиг частоты — от ускорения, а, согласно СТО, — от скорости. То есть, имелся бы либо двукратный эффект изменения частоты, либо же эффект бы отсутствовал. А, раз в опыте наблюдается лишь однократный эффект, то теория относительности не верна — замедления времени в движущихся системах нет, а есть лишь изменение хода движущихся с ускорением часов — эффект, объяснимый в рамках классической физики и БТР.В том же опыте параллельно измерялся эффект изменения скорости хода часов (опять же часов, а не времени) — за счёт различного поля тяготения. Часы, находившиеся в самолётах, летящих на высоте 10 км, испытывали меньшую силу тяжести — ускорение на этой высоте на 0,32 % меньше. Соответственно, кроме воздействия обычного ускорения, замедляющего часы, на их ход оказывает влияние снижение силы тяжести, ведущее к более быстрому ходу часов в самолёте в сравнении с часами на земле (§ 1.18). Эти два эффекта складываются, и мы наблюдаем их суммарное влияние [57].
Другой опыт, якобы подтвердивший замедление времени, состоял в измерении поперечного эффекта Доплера. Идея этого опыта была выдвинута всё тем же Ритцем для проверки СТО ещё в 1908 г. Но сам опыт был выполнен лишь 30 лет спустя Айвсом [153]. Напомним, что движение источника влияет на частоту идущего от него света. В продольном эффекте Доплера изменение частоты f'=f
(1+v×cos(φ)/c) создаётся продольной составляющей скорости и объясняется классически. Зато, в поперечном эффекте Доплера (Рис. 47), где источник движется поперёк луча зрения (φ=90°), и отсутствует эффект Доплера, обусловленный продольной компонентой скорости, наблюдаемое в опыте изменение частоты говорит, якобы, уже об изменении самого хода времени, которое возможно лишь в СТО [74]. Но, в действительности, частоту меняет всё тот же продольный эффект Доплера и сдвиг частоты можно объяснить целиком в рамках классической теории Ритца, если применить баллистический принцип. Надо лишь учесть, что в системе отсчёта источника угол φ, под которым свет испускается к наблюдателю, в действительности, будет уже не π/2, а чуть больше. Ведь, согласно БТР, скорость света складывается со скоростью источника, и потому, дабы свет дошёл до нас, он должен вылетать из источника под углом α к лучу зрения (это аберрационный угол, аналогичный наблюдаемому в эффекте звёздной аберрации, § 1.9). И, хоть угол этот мал, cos(φ) всё же уже не нуль: cos(φ)=cos(90°+α)=-sin(α)=-v/c, откуда f'=f(1+v×cos(φ)/c)=f(1–v2/c2). Длина волны, напротив, вырастет: λ'=c'/f'=с(1–v2/2c2)/f(1–v2/c2)≈λ(1+v2/2c2). Именно такие изменения длины волны излучения движущихся атомов, вполне объяснимые с позиции БТР, и наблюдались в опытах. Так что, поперечный эффект Доплера не опроверг, а подтвердил классическую физику и теорию Ритца, как отмечали многие авторы, вскрывшие роль угла аберрации в этом опыте [81, 111].