Читаем Баллистическая теория Ритца и картина мироздания полностью

Система GPS (Глобальная Позиционирующая Система) тоже работает по методу радиолокации с наземных станций слежения и группы искусственных спутников, витки орбит которых образуют спутниковый навигационный клубок, опутывающий всю Землю. GPS-модуль, встроенный в мобильное устройство (скажем, в телефон) ловит радиосигналы, посланные несколькими спутниками. В этих сигналах закодирована информация о положении каждого спутника (находимом станциями), а также время излучения сигнала, заданное сверхточными часами. Вычитая это время из времени приёма сигнала, GPS-приёмник находит время T движения радиоимпульса, а по нему — расстояние L=cT до спутника. Измерив расстояния L1, L2, L3, L

4 до трёх-четырёх спутников, и располагая их координатами, микроЭВМ из тригонометрии рассчитывает положение GPS-приёмника на земной поверхности.

Казалось бы, формула L=cT верна, раз работают GPS-навигаторы, что будто бы подтверждает постулат теории относительности о независимости скорости c радиосигнала от движения излучающих спутников. Однако точный расчёт свидетельствует скорее в пользу БТР. Спутники навигационной системы выводят на орбиты радиуса R порядка 26000 км, то есть они летят на высоте около 20000 км над Землёй, имеющей радиус r=6400 км. На такой орбите скорость V спутников составляет около 4 км/с, наращивая скорость посланного сигнала до значения c'=c+V. Поскольку расстояние до Земли L~20000 км, то полагают, что поправка, вносимая БТР, составляет Δ=LV/c

≈ 270 м, что на порядок выше ошибок GPS-навигаторов.

Однако, на деле, в БТР скорости источника и света складываются не арифметически, а векторно, по классической кинематике. То есть для скорости прихода радиосигнала c'=c — Vr, посланного спутником к приёмнику, важна лишь составляющая Vr скорости V источника вдоль луча зрения (лучевая скорость спутника относительно приёмника). Тогда поправка расстояния Δ=LVr/c. А раз спутник летит по высокой круговой орбите, его орбитальная скорость направлена поперёк луча зрения, так что Vr<<V. Если спутник находится в зените, то Vr=0, но растёт при уменьшении высоты h спутника над горизонтом по закону Vr

=sinα·cosh, где sinα=r/R≈0,25. То есть, по БТР, максимальная поправка к расстоянию до спутника Δ=LVr/c=67 м, и возникает она лишь в крайнем случае, когда спутник виден возле горизонта (приёмник же обычно "ловит" спутники с h>10–15º). Также приёмник редко лежит в плоскости орбиты спутника, будучи расположен под углом θ к ней, и лучевая скорость ещё ниже: Vr=
sinα·coscosθ. Отсюда Δ=LVr/c=LV·sinα·coscosθ/c. Поскольку cosh≤1 и cosθ≤1, а среднее значение модуля косинуса составляет 0,63, то средняя ошибка Δ=27 м.

Но и эта средняя ошибка в 27 м относится лишь к расстоянию до одного спутника, а для расчёта координат нужны данные трёх-четырёх спутников. Если учесть, что они дают ошибки разного знака, случайно суммируемых в разных направлениях, то их взаимная компенсация при усреднении ещё снизит ошибку. Но и этот результат учитывает общую поправку координат, то есть сумму ошибок по высоте и по горизонтали, так что ошибка в нахождении проекции точки на земной шар снизится ещё в 1,5 раза. В итоге, средняя вносимая БТР поправка к горизонтальным координатам составит всего 5–10 м. Но такой порядок ошибки по горизонтали и заявляют производители GPS. К тому же, применяют ряд корректирующих программ, дабы снизить эту ошибку, в том числе методы усреднения, дифференциальные методы с привязкой к контрольным базовым станциям. Ведь такие ошибки на ранних этапах развития GPS нередко приводили к авариям — суда налетали на рифы, люди гибли в горах. И вероятная причина таких аварий на Земле и в космосе — это неучёт баллистического принципа.

Не умея устранить ошибку, вносимую влиянием скорости, с ней борются обходными путями, например, увеличивая число спутников и параллельно принимаемых каналов. Так, если над горизонтом видны сразу 6–10 спутников, положение приёмника можно определить гораздо точнее, ведя расчёт по разным группам спутников, комбинируя их по три в разных сочетаниях и для каждой группы находя положение приёмника. Поскольку лучевые скорости спутников имеют разную величину и знак, то вызванные ими ошибки компенсируют друг друга, и среднее расчётное положение близко к реальному. Радиолучи, словно дротики, случайно отклонившиеся от центра мишени, после усреднения координат их попаданий, дают в среднем положение близкое к нужному.

Перейти на страницу:

Похожие книги

Физика для всех. Движение. Теплота
Физика для всех. Движение. Теплота

Авторы этой книги – лауреат Ленинской и Нобелевской премий академик Л.Д. Ландау и профессор А.И. Китайгородский – в доступной форме излагают начала общего курса физики. Примечательно, что вопросы атомного строения вещества, теория лунных приливов, теория ударных волн, теория жидкого гелия и другие подобные вопросы изложены вместе с классическими разделами механики и теплоты. Подобная тесная связь актуальных проблем физики с ее классическими понятиями, их взаимная обусловленность и неизбежные противоречия, выводящие за рамки классических понятий, – все это составляет сущность современного подхода к изучению физики. Новое, свежее изложение делает книгу полезной для самого широкого круга читателей.

Александр Исаакович Китайгородский , Лев Давидович Ландау

Научная литература / Физика / Технические науки / Учебники / Образование и наука
Стратегические операции люфтваффе
Стратегические операции люфтваффе

Бомбардировочной авиации люфтваффе, любимому детищу рейхсмаршала Геринга, отводилась ведущая роль в стратегии блицкрига. Она была самой многочисленной в ВВС нацистской Германии и всегда первой наносила удар по противнику. Между тем из большинства книг о люфтваффе складывается впечатление, что они занимались исключительно поддержкой наступающих войск и были «не способны осуществлять стратегические бомбардировки». Также «бомберам Гитлера» приписывается масса «террористических» налетов: Герника, Роттердам, Ковентри, Белград и т. д.Данная книга предлагает совершенно новый взгляд на ход воздушной войны в Европе в 1939–1941 годах. В ней впервые приведен анализ наиболее важных стратегических операций люфтваффе в начальный период Второй мировой войны. Кроме того, читатели узнают ответы на вопросы: правда ли, что Германия не имела стратегических бомбардировщиков, что немецкая авиация была нацелена на выполнение чисто тактических задач, действительно ли советская ПВО оказалась сильнее английской и не дала немцам сровнять Москву с землей и не является ли мифом, что битва над Англией в 1940 году была проиграна люфтваффе.

Дмитрий Владимирович Зубов , Дмитрий Михайлович Дегтев , Дмитрий Михайлович Дёгтев

Военное дело / История / Технические науки / Образование и наука
Городской Пассажирский Транспорт Санкт-Петербурга: Политика, Стратегия, Экономика (1991-2014 гг.)
Городской Пассажирский Транспорт Санкт-Петербурга: Политика, Стратегия, Экономика (1991-2014 гг.)

Монография посвящена актуальным вопросам регулирования развития городского пассажирского транспорта Санкт-Петербурга. Рассматриваются вопросы реформирования городского пассажирского транспорта в период с 1991 по 2014 годы. Анализируется отечественный и зарубежный опыт управления, организации и финансирования перевозок городским пассажирским транспортом. Монография предназначена для научных работников и специалистов, занимающихся проблемами городского пассажирского транспорта, студентов и аспирантов, преподавателей экономических вузов и факультетов, предпринимателей и руководителей коммерческих предприятий и организаций сферы городского транспорта, представителей органов законодательной и исполнительной власти на региональном уровне. Автор заранее признателен тем читателям, которые найдут возможным высказать свои соображения по существу затронутых в монографии вопросов и укажут пути устранения недостатков, которых, вероятно, не лишена предлагаемая работа.

Владимир Анатольевич Федоров

Экономика / Технические науки / Прочая научная литература / Внешнеэкономическая деятельность