Читаем Беседы об информатике полностью

Сегодня ЭВМ при решении одной задачи выполняет миллиарды отдельных операций. Каждая реализуется по одной команде, а последовательность команд составляет программу. Если бы количество команд в программе равнялось количеству фактически выполняемых операций, то есть измерялось миллиардами, программы оказались бы практически нереализуемыми. Создание ЭВМ потеряло бы всякий смысл.

Благодаря концепции фон Неймана над каждой командой, хранимой в оперативной памяти, можно выполнять такие же операции, как и над числами. Одна и та же команда выполняется автоматически много раз подряд, но перед каждым очередным выполнением она частично изменяется (модифицируется). Только в таких условиях проблема построения программы стала осуществимой.

Первая ЭВМ с хранимой программой была создана в Великобритании в 1949 году (машина ЭДСАК, конструктор, М. Уилкс). В США серийный выпуск ЭВМ с хранимой программой (машина УНИВАК, проект Дж. Эккерта и Дж. Маучли) начался в 1951 году. Наши «Стрела» и БЭСМ, естественно, также относились к классу ЭВМ с хранимой программой. Таким образом, разрыв между отечественной вычислительной техникой, которая в своем начальном периоде развивалась совершенно независимо, и вычислительной техникой Великобритании и США составлял в те времена неполных три года. В отдельных решениях, например в конструировании оперативных запоминающих устройств на электронно-лучевых трубках, мы опережали ведущие западные страны.

Третьим революционным моментом, в истории вычислительной техники можно считать появление и развитие технологии больших интегральных схем. Начиная с этого момента у ЭВМ появилась способность к самовоспроизводству. Нелишне напомнить здесь, что информатика пронизывает все стороны нашей жизни и деятельности, а значит, представляет собой массовое явление. Способность больших интегральных схем к самовоспроизводству во многом определяет именно массовость технических средств информатики.


Что такое ЭВМ?


Любая современная ЭВМ состоит из двух основных четко разделенных комплексов: технических средств и программного (правильнее бы сказать информационного) обеспечения. В этом смысле в ЭВМ используются те же организационные принципы, что и в живой клетке или промышленном предприятии. Все это, очевидно, так и должно быть. Интересно, что на первых порах существования ЭВМ программному обеспечению уделялось недостаточно внимания. Это повлекло за собой много неприятностей и, в частности, существенно задержало развитие вычислительной техники. Почему так получилось? Причина была вот в чем.

Технические средства, или, в просторечии, «железо» (англичане и американцы до сих пор говорят «hardware», что в дословном переводе означает «скобяной товар»), есть нечто весомое, ощутимое, то, что смело можно назвать продукцией, за что можно платить деньги. А что такое информация? К пониманию того, что информация также представляет собой физическую сущность, продукцию, производимую в результате выполнения технологических процессов, человечество пришло в самые последние годы. Отсюда и недооценка роли информационного обеспечения. К счастью, все это в прошлом.

Сейчас наблюдается тенденция передачи техническим средствам части (подчас большой) функций программного обеспечения. Значит, количество информации, содержащейся в ЭВМ, уменьшается? Наоборот, оно неуклонно увеличивается по мере совершенствования и развития самих ЭВМ. Просто сказывается естественный процесс концентрации информации, о котором мы еще будем иметь повод поговорить подробнее.

Итак, современная ЭВМ — совокупность комплексов технических средств и программного обеспечения. Комплекс технических средств, в свою очередь, подразделяется на три системы: систему памяти, систему, занимающуюся собственно переработкой информации, и систему, обеспечивающую обмен информацией с внешней средой. Схематически структура ЭВМ представлена на рисунке 4.

Рис. 4.

Система памяти — важнейшая. В памяти хранится как информация, подлежащая переработке, так и информация, управляющая самой переработкой.

Количество информации, с которой имеет дело ЭВМ, огромное. Сегодня самой употребляемой единицей количества информации применительно к ЭВМ стал так называемый байт. Байт — это группа из восьми двоичных символов (двоичный символ принимает одно из двух возможных значений, скажем, либо 0, либо 1). Следовательно, каждый байт представляет собой результат выбора одной из 256 возможностей. Количество информации, заключенной в байте, равно соответственно 8 бит.

Во второй беседе мы стремились показать, как буквам латинского алфавита поставить в соответствие группы из пяти двоичных символов. Количество возможностей при этом ограничивалось 32. Если использовать не только строчные, но и прописные буквы, количество возможностей удваивается. Потребуется группа из шести двоичных символов (64 возможности): XXXXXX (где X может быть либо 0, либо 1).

Перейти на страницу:

Все книги серии Эврика

Похожие книги

Городской Пассажирский Транспорт Санкт-Петербурга: Политика, Стратегия, Экономика (1991-2014 гг.)
Городской Пассажирский Транспорт Санкт-Петербурга: Политика, Стратегия, Экономика (1991-2014 гг.)

Монография посвящена актуальным вопросам регулирования развития городского пассажирского транспорта Санкт-Петербурга. Рассматриваются вопросы реформирования городского пассажирского транспорта в период с 1991 по 2014 годы. Анализируется отечественный и зарубежный опыт управления, организации и финансирования перевозок городским пассажирским транспортом. Монография предназначена для научных работников и специалистов, занимающихся проблемами городского пассажирского транспорта, студентов и аспирантов, преподавателей экономических вузов и факультетов, предпринимателей и руководителей коммерческих предприятий и организаций сферы городского транспорта, представителей органов законодательной и исполнительной власти на региональном уровне. Автор заранее признателен тем читателям, которые найдут возможным высказать свои соображения по существу затронутых в монографии вопросов и укажут пути устранения недостатков, которых, вероятно, не лишена предлагаемая работа.

Владимир Анатольевич Федоров

Экономика / Технические науки / Прочая научная литература / Внешнеэкономическая деятельность
Компьютерные сети. 5-е издание
Компьютерные сети. 5-е издание

Перед вами — очередное, пятое издание самой авторитетной книги по современным сетевым технологиям, написанной признанным экспертом в этой области Эндрю Таненбаумом в соавторстве с профессором Вашингтонского университета Дэвидом Уэзероллом. Первая версия этого классического труда появилась на свет в далеком 1980 году, и с тех пор каждое издание книги неизменно становилось бестселлером и использовалось в качестве базового учебника в ведущих технических вузах. В книге последовательно изложены основные концепции, определяющие современное состояние и тенденции развития компьютерных сетей. Авторы подробнейшим образом объясняют устройство и принципы работы аппаратного и программного обеспечения, рассматривают все аспекты и уровни организации сетей — от физического до уровня прикладных программ. Изложение теоретических принципов дополняется яркими, показательными примерами функционирования Интернета и компьютерных сетей различного типа. Пятое издание полностью переработано с учетом изменений, происшедших в сфере сетевых технологий за последние годы и, в частности, освещает такие аспекты, как беспроводные сети стандарта 802.12 и 802.16, сети 3G, технология RFID, инфраструктура доставки контента CDN, пиринговые сети, потоковое вещание, интернет-телефония и многое другое.

А. Гребенькова , Джеймс Уэзеролл

Технические науки