Читаем Бесконечная сила. Как математический анализ раскрывает тайны вселенной полностью

Если учесть, что математика обычно изображается точной и безупречно рациональной, все эти разговоры о желаниях и заблуждениях могут показаться неуместными. Она рациональна, но не всегда изначально. Творение интуитивно, понимание приходит позже. В истории анализа логика всегда отставала от интуиции чаще, чем в других областях математики. И это заставляет чувствовать, что эта тема особенно человечна и дружелюбна, а ее гении больше похожи на нас.

Кривые, движение и изменение

Принцип бесконечности организует рассказ об анализе вокруг какой-то методологической темы. Но анализ – это не только методология, но и загадки. Его развитию особенно способствовали три: загадка кривых, загадка движения и загадка изменения. Плодотворность их изучения доказала ценность чистого любопытства.

Задачи о кривых, движении и изменении на первый взгляд могут показаться неважными, а может, даже безнадежно заумными. Но они затрагивают настолько глубокие концептуальные вопросы, а математика так глубоко вплетена в ткань Вселенной, что их решение имело далеко идущие последствия для хода цивилизации и нашей повседневной жизни. Как мы увидим в следующих главах, мы пожинаем плоды этих исследований всякий раз, когда слушаем музыку в своих телефонах, делаем покупки в магазинах с помощью лазерных сканеров или находим дорогу домой благодаря GPS-навигатору.

Все началось с загадки кривых. Здесь я использую слово «кривые» в самом широком смысле – для обозначения любой изогнутой линии, изогнутой поверхности или изогнутого твердого тела – представьте себе резиновую ленту, обручальное кольцо, плавающий пузырь, контуры вазы или палку салями. Чтобы упростить вещи, ранние геометры, как правило, сосредоточивались на абстрактных, идеализированных версиях кривых форм и игнорировали толщину, шероховатости и текстуру. Например, математическая сфера представлялась бесконечно тонкой, гладкой, идеально круглой мембраной без толщины, неровностей или волосатости, как у кокосового ореха. Но даже при таких идеализированных представлениях изогнутые формы вызывали принципиальные трудности, поскольку там не было прямых. С треугольниками и квадратами проблем не возникало. С кубами тоже. Они состоят из прямых линий и плоскостей, соединенных между собой в углах. Нетрудно вычислить их периметр, площадь или объем. Такие задачи умели решать геометры всего мира – в Древнем Вавилоне и Египте, Китае и Индии, Греции и Японии. Но с округлыми формами дело обстояло гораздо хуже. Никто не знал, какова поверхность сферы или какой у нее объем. В древности даже вычисление длины окружности или площади круга представлялось невыполнимой задачей. Не было стартовой точки и прямых линий, от которых можно оттолкнуться. Все изогнутое казалось непостижимым.

Так начинался анализ. Он рос из любопытства геометров и разочарования в округлости. Круги, сферы и прочие изогнутые формы были Гималаями той эпохи. И не потому, что они ставили важные практические задачи, по крайней мере поначалу. Дело было в жажде приключений, характерной для человеческого духа. Подобно покорителям Эвереста, геометры хотели разобраться с кривыми просто потому, потому что они есть[23]

.

Прорыв произошел благодаря идее, что кривые на самом деле состоят из прямых частей. Хотя это неправда, но можно сделать вид, что это так. Загвоздка была в том, что тогда эти части должны быть бесконечно малы и бесконечно многочисленны. Благодаря такой фантастической концепции родилось интегральное исчисление. Это самое раннее применение «принципа бесконечности». История его развития растянется у нас на несколько глав, но его суть в зародышевой форме мы можем изложить уже сейчас: если очень сильно увеличить окружность (или другую гладкую кривую), то часть, которую мы увидим под микроскопом, будет выглядеть как прямая линия. Так что в принципе можно вычислить длину кривой, сложив длины всех маленьких прямых кусочков. Чтобы выяснить, как именно это делать – нелегкая задача, – понадобились многовековые усилия величайших математиков человечества. В итоге коллективно (а иногда и в результате ожесточенного соперничества) они продвинулись по пути к решению загадки кривых. Побочными результатами, как мы увидим в главе 2, стала математика, используемая для рисования реалистично выглядящих волос, одежды и лиц персонажей в компьютерной анимации и вычисления, необходимые пластическим хирургам для выполнения операций на лице виртуальных пациентов, прежде чем оперировать реальных.

Поиски решения загадки кривых достигли апогея, когда стало ясно, что кривые – это нечто большее, чем просто геометрические отклонения. Они были ключом к разгадке тайн природы. Они естественным образом возникали в параболической дуге летящего мяча, в эллиптической орбите Марса, движущегося вокруг Солнца, и в выпуклой форме линзы, которая могла преломлять и фокусировать свет в нужном месте, без чего было бы невозможно бурное развитие микроскопов и телескопов в Европе позднего Возрождения.

Перейти на страницу:

Все книги серии МИФ. Научпоп

Как рождаются эмоции. Революция в понимании мозга и управлении эмоциями
Как рождаются эмоции. Революция в понимании мозга и управлении эмоциями

Как вы думаете, эмоции даны нам от рождения и они не что иное, как реакция на внешний раздражитель? Лиза Барретт, опираясь на современные нейробиологические исследования, открытия социальной психологии, философии и результаты сотен экспериментов, выяснила, что эмоции не запускаются – их создает сам человек. Они не универсальны, как принято думать, а различны для разных культур. Они рождаются как комбинация физических свойств тела, гибкого мозга, среды, в которой находится человек, а также его культуры и воспитания.Эта книга совершает революцию в понимании эмоций, разума и мозга. Вас ждет захватывающее путешествие по удивительным маршрутам, с помощью которых мозг создает вашу эмоциональную жизнь. Вы научитесь по-новому смотреть на эмоции, свои взаимоотношения с людьми и в конечном счете на самих себя.На русском языке публикуется впервые.

Лиза Фельдман Барретт

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература

Похожие книги

Искусство статистики. Как находить ответы в данных
Искусство статистики. Как находить ответы в данных

Статистика играла ключевую роль в научном познании мира на протяжении веков, а в эпоху больших данных базовое понимание этой дисциплины и статистическая грамотность становятся критически важными. Дэвид Шпигельхалтер приглашает вас в не обремененное техническими деталями увлекательное знакомство с теорией и практикой статистики.Эта книга предназначена как для студентов, которые хотят ознакомиться со статистикой, не углубляясь в технические детали, так и для широкого круга читателей, интересующихся статистикой, с которой они сталкиваются на работе и в повседневной жизни. Но даже опытные аналитики найдут в книге интересные примеры и новые знания для своей практики.На русском языке публикуется впервые.

Дэвид Шпигельхалтер

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература
Вторжение жизни. Теория как тайная автобиография
Вторжение жизни. Теория как тайная автобиография

Если к классическому габитусу философа традиционно принадлежала сдержанность в демонстрации собственной частной сферы, то в XX веке отношение философов и вообще теоретиков к взаимосвязи публичного и приватного, к своей частной жизни, к жанру автобиографии стало более осмысленным и разнообразным. Данная книга показывает это разнообразие на примере 25 видных теоретиков XX века и исследует не столько соотношение теории с частным существованием каждого из авторов, сколько ее взаимодействие с их представлениями об автобиографии. В книге предложен интересный подход к интеллектуальной истории XX века, который будет полезен и специалисту, и студенту, и просто любознательному читателю.

Венсан Кауфманн , Дитер Томэ , Ульрих Шмид

Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература / Языкознание / Образование и наука
История целибата
История целибата

Флоренс Найтингейл не вышла замуж. Леонардо да Винчи не женился. Монахи дают обет безбрачия. Заключенные вынуждены соблюдать целибат. История повествует о многих из тех, кто давал обет целомудрия, а в современном обществе интерес к воздержанию от половой жизни возрождается. Но что заставляло – и продолжает заставлять – этих людей отказываться от сексуальных отношений, того аспекта нашего бытия, который влечет, чарует, тревожит и восхищает большинство остальных? В этой эпатажной и яркой монографии о целибате – как в исторической ретроспективе, так и в современном мире – Элизабет Эбботт убедительно опровергает широко бытующий взгляд на целибат как на распространенное преимущественно в среде духовенства явление, имеющее слабое отношение к тем, кто живет в миру. Она пишет, что целибат – это неподвластное времени и повсеместно распространенное явление, красной нитью пронизывающее историю, культуру и религию. Выбранная в силу самых разных причин по собственному желанию или по принуждению практика целибата полна впечатляющих и удивительных озарений и откровений, связанных с сексуальными желаниями и побуждениями.Элизабет Эбботт – писательница, историк, старший научный сотрудник Тринити-колледжа, Университета Торонто, защитила докторскую диссертацию в университете МакГилл в Монреале по истории XIX века, автор несколько книг, в том числе «История куртизанок», «История целибата», «История брака» и другие. Ее книги переведены на шестнадцать языков мира.

Элизабет Эбботт

Педагогика / Образование и наука / Зарубежная образовательная литература, зарубежная прикладная, научно-популярная литература