Таким образом, в литосфере явно наблюдается дефицит кислотообразующих элементов, среди которых ведущую роль в верхней части литосферы играет углерод.
Разложение органических веществ микроорганизмами поставляет в биокосные системы угольную и органические кислоты, которые и являются существенным источником кислой реакции. Важным источником углекислого газа на глубинах являются также процессы разложения карбонатов. В верхней части биосферы локальным источником сернокислой среды служит окисление пирита и других дисульфидов.
При взаимодействии кислых вод с горными породами преобладающие по массе катионы горных пород нейтрализуют кислоты. В результате гидролиза происходит подщелачивание раствора, так как угольная и органическая кислоты являются кислотами средней или слабой силы, в то время как главные катионы образуют сильные основания. Так, при взаимодействии кислых вод с горными породами кислая среда сменяется щелочной. В результате в различных частях биосферы возникает кислотнощелочная зональность — смена кислотных горизонтов щелочными. Наиболее изучены эти явления в почвах, коре выветривания и илах.
Во всех районах влажного и теплого климата в элювиальных почвах происходит быстрое разложение растительных остатков, в связи с чем в верхние горизонты почв поступает много гумусовых кислот и углекислого газа. Оснований для их нейтрализации, как правило, не хватает, и в горизонте А почв возникает кислая и слабокислая среда (рН = 4,0—6,5). По сравнению с атмосферными осадками кислотность возрастает в десятки и сотни раз. Мигрируя в нижние горизонты почвы, эти кислые растворы взаимодействуют с минералами горных пород, разлагают их с освобождением сильных катионов — кальция, натрия, магния, калия и др. В результате кислоты частично или полностью нейтрализуются, pH повышается. Так в элювиальных почвах гумидных ландшафтов возникает кислотно-щелочная зональность.
Но принципиально сходная картина наблюдается и в черноземных, и в болотных, и во многих других почвах: в верхних горизонтах среда более кислая (или менее щелочная), чем в нижних.
Кислотно-щелочная зональность характерна и для илов, механизм ее возникновения и последовательность горизонтов, в общем, те же, что и в почвах (более кислые горизонты сверху, менее кислые — снизу).
Четко выражена кислотно-щелочная зональность в коре выветривания влажных тропиков, в верхние горизонты которой просачиваются кислые растворы из почвы. В нижней части коры создастся нейтральная или даже щелочная среда, обусловленная как принесенными сверху катионами, так и продуктами разложения первичных минералов нижних горизонтов. Особенно наглядна эта кислотно-щелочная зональность в древней коре выветривания ультраосновных пород Урала. Из верхних горизонтов коры — зоны охр и нонтронитов магний выносился, и там господствовала кислая реакция, а в нижних горизонтах — «выщелоченных серпентинитах» и «зоне дезинтеграции» он осаждался в форме магнезита, доломита, гидромагнезита, керолита, магниевого монтмориллонита и даже брусита — Mg(OH)2
(последний только в зоне дезинтеграции). Так в результате приноса магния сверху в нижних горизонтах возникала щелочная среда, а в коре выветривания в целом — кислотно-щелочная зональность. Следовательно, кислое выщелачивание, удаляя катионы из верхних горизонтов, приводило к развитию щелочной среды в нижних горизонтах.Кислотно-щелочная зональность характерна и для водоносных горизонтов, и для водных масс рек, озер, морей и океанов. Конкретные формы зональности различны, но ее причины везде обусловлены процессами разложения органических веществ, биологическим круговоротом атомов.
Геохимические барьеры.
Как мы убедились, геохимия много внимания уделяет физико-химическим обстановкам биокосных систем, выделяя сернокислый, кислый, кальциевый, содовый и прочие их классы. Отдельные классы господствуют на огромных пространствах. Например, все воды Мирового океана относятся к одному соленосному классу. Постепенно выявилась необходимость изучения границ между геохимическими обстановками, т. е. тех участков, где один класс сменяется другим. Нередко к подобным границам приурочены концентрации химических элементов. Такие границы автор в 1961 г. предложил именовать геохимическими барьерами, которые можно определить так же, как участки земной коры, где на коротком расстоянии происходит резкое уменьшение интенсивности миграции химических элементов и как следствие их концентрация (рис. 29).