Устойчивые движения электрона в атоме, как показал Шрёдингер (1926), в некотором отношении аналогичны стоячим волнам, амплитуды которых в разных точках различны. При этом в атоме, как в колебательной системе, возможны лишь некоторые «избранные» движения с определёнными значениями энергии, момента количества движения и проекции момента электрона в атоме. Каждое стационарное состояние атома описывается при помощи некоторой волновой функции, являющейся решением волнового уравнения особого типа — уравнения Шрёдингера; волновой функции соответствует «электронное облако», характеризующее (в среднем) распределение плотности электронного заряда в атоме (см. Атом, там же на рис. 3 показаны проекции «электронных облаков» атома водорода). В 20—30-х гг. были разработаны приближённые методы расчёта распределения плотности электронного заряда в сложных атомах, в частности метод Томаса — Ферми (1926, 1928). Эта величина и связанное с ней значение т. н. атомного фактораважны при исследовании электронных столкновений с атомами, а также рассеяния ими рентгеновских лучей. На основе квантовой механики удалось путём решения уравнения Шрёдингера правильно рассчитать энергии электронов в сложных атомах. Приближённые методы таких расчётов были разработаны в 1928 Д. Хартри (Англия) и в 1930 В. А. Фоком (СССР). Исследования атомных спектров полностью подтвердили квантовомеханическую теорию атома. При этом выяснилось, что состояние электрона в атоме существенно зависит от его спина —
собственного механического момента количества движения. Было дано объяснение действия внешних электрических и магнитных полей на атом (см. Штарка явление, Зеемана явление). Важный общий принцип, связанный со спином электрона, был открыт швейцарским физиком В. Паули (1925) (см. Паули принцип), согласно этому принципу, в каждом электронном состоянии в атоме может находиться только один электрон; если данное состояние уже занято каким-либо электроном, то последующий электрон, входя в состав атома, вынужден занимать другое состояние. На основе принципа Паули были окончательно установлены числа заполнения электронных оболочек в сложных атомах, определяющие периодичность свойств элементов. Исходя из квантовой механики, немецкие физики В. Гейтлер и Ф. Лондон (1927) дали теорию т. н. гомеополярной химической связи двух одинаковых атомов (например, атомов водорода в молекуле H2), не объяснимой в рамках боровской модели атома. Важными применениями квантовой механики в 30-х гг. ив дальнейшем были исследования связанных атомов, входящих в состав молекулы или кристалла. Состояния атома, являющегося частью молекулы, существенно отличаются от состояний свободного атома. Существенные изменения претерпевает атом также в кристалле под действием внутрикристаллического поля, теория которого была впервые разработана Х. Бете (1929). Исследуя эти изменения, можно установить характер взаимодействия атома с его окружением. Крупнейшим экспериментальным достижением в этой области А. ф. было открытие Е. К. Завойским в 1944 электронного парамагнитного резонанса,
давшего возможность изучать различные связи атомов с окружающей средой. Современная атомная физика.
Основными разделами современной А. ф. являются теория атома, атомная (оптическая) спектроскопия, рентгеновская спектроскопия, радиоспектроскопия (она исследует также и вращательные уровни молекул), физика атомных и ионных столкновений. Различные разделы спектроскопии охватывают разные диапазоны частот излучения и, соответственно, разные диапазоны энергий квантов. В то время как рентгеновская спектроскопия изучает излучения атомов с энергиями квантов до сотен тыс. эв, радиоспектроскопия имеет дело с очень малыми квантами — вплоть до квантов менее 10-6эв.
Важнейшая задача А. ф. — детальное определение всех характеристик состояний атома. Речь идёт об определении возможных значений энергии атома — его уровней энергии, значений моментов количества движения и других величин, характеризующих состояния атома. Исследуются тонкая и сверхтонкая структуры уровней энергии (см. Атомные спектры), изменения уровней энергии под действием электрических и магнитного полей — как внешних, макроскопических, так и внутренних, микроскопических. Большое значение имеет такая характеристика состояний атома, как время жизни электрона на уровне энергии. Наконец, большое внимание уделяется механизму возбуждения атомных спектров.