Читаем Большая Советская Энциклопедия (БИ) полностью

  Для живой природы характерно сложное, иерархическое соподчинение уровней организации её структур. Вся совокупность органического мира Земли вместе с окружающей средой образует биосферу, которая складывается из биогеоценозов — областей с характерными природными условиями, заселённых определёнными комплексами (биоценозами) организмов; биоценозы состоят из популяций — совокупностей животных или растительных организмов одного вида, живущих на одной территории; популяции состоят из особей; особи многоклеточных организмов состоят из органов и тканей, образованных различными клетками; клетки, как и одноклеточные организмы, состоят из внутриклеточных структур, которые строятся из молекул. Для каждого из выделенных уровней характерны свои закономерности, связанные с различными масштабами явлений, принципами организации, особенностями взаимоотношения с выше- и нижележащими уровнями. Каждый из уровней организации жизни изучается соответствующими отраслями современной Б. На молекулярном уровне биохимией, биофизикой, молекулярной биологией, молекулярной генетикой, цитохимией, многими разделами вирусологии, микробиологии изучаются физико-химические процессы, осуществляющиеся в живом организме. Исследования живых систем на этом уровне показывают, что они состоят из низко- и высокомолекулярных органических соединений, практически не встречающихся в неживой природе. Наиболее специфичны для жизни такие биополимеры

, как белки, нуклеиновые кислоты и полисахариды, а также липиды (жироподобные соединения) и составные части их молекул (аминокислоты, нуклеотиды, простые углеводы, жирные кислоты и др.). На молекулярном уровне изучают синтез и репродукцию, распад и взаимные превращения этих соединений в клетке, происходящий при этом обмен веществом, энергией и информацией, регуляцию этих процессов. Уже выяснены основные пути обмена, важнейшая особенность которых — участие биологических катализаторов — белков-ферментов, строго избирательно осуществляющих определённые химические реакции. Изучено строение ряда белков и некоторых нуклеиновых кислот, а также многих простых органических соединений. Показано, что химическая энергия, освобождающаяся в ходе биологического окисления (гликолиз, дыхание), запасается в виде богатых энергией (макроэргических) соединений, в основном аденозинфосфорных кислот (АТФ и др.), и в дальнейшем используется в требующих притока энергии процессах (синтез и транспорт веществ, мышечное сокращение и др.). Крупный успех Б. — открытие генетического кода. Наследственные свойства организма «записаны» в молекулах дезоксирибонуклеиновой кислоты
(ДНК) четырьмя видами чередующихся в определённой последовательности мономеров-нуклеотидов. Способность молекул ДНК удваиваться (самокопироваться) обеспечивает их воспроизведение в клетках организма и наследственную передачу от родителей к потомкам. Реализация наследственной информации происходит при участии синтезируемых на матричных молекулах ДНК молекул рибонуклеиновой кислоты — РНК, которые переносятся от хромосом ядра на специальные внутриклеточные частицы — рибосомы, где и осуществляется биосинтез белка. Т. о., закодированная в ДНК наследственность контролирует через белки-ферменты как структурные белки, так и все основные свойства клеток и организма в целом.

  Биологические исследования на молекулярном уровне требуют выделения и изучения всех видов молекул, входящих в состав клетки, выяснения их взаимоотношений друг с другом. Для разделения макромолекул используются их различия в плотности и размерах (ультрацентрифугирование

), зарядах (электрофорез),
адсорбционных свойствах (хроматография). Взаимное пространственное расположение атомов в сложных молекулах изучают методом рентгеноструктурного аналаза. Пути превращения веществ, скорости их синтеза и распада исследуют путем введения соединений, содержащих радиоактивные атомы. Важным методом является также создание искусственных модельных систем из выделенных клеточных компонентов, где частично воспроизводятся процессы, идущие в клетке. (Все биохимические процессы в клетке происходят не в однородной смеси веществ, а на определённых клеточных структурах, создающих пространственную разобщённость различных одновременно протекающих реакций.)

Перейти на страницу:

Похожие книги

100 великих тайн Второй мировой
100 великих тайн Второй мировой

Самая тяжёлая и кровопролитная война в истории человечества — Вторая мировая — оставила нам множество неразгаданных тайн и загадок. Среди них: борьба за Копьё Оттона и странный полёт Гесса в Англию, трагедия Катыни и блокада Ленинграда, Ржевская битва («второй Сталинград») и операция в Манильской бухте, засекреченные катастрофы кораблей и пропажи художественных ценностей… Подвиги разведчиков и покушения на вождей и полководцев, героизм подпольщиков и партизан и подлость коллаборационистов, погоня за новейшими образцами техники и странные действия политиков, пропагандистские акции и финансовые диверсии…Обо всём этом увлекательно повествуется на страницах очередной книги из серии «100 великих».

Николай Николаевич Непомнящий

История / Энциклопедии / Образование и наука / Словари и Энциклопедии