Читаем Большая Советская Энциклопедия (БИ) полностью

Биофи'зика, биологическая физика, наука, изучающая физические и физико-химические процессы, протекающие в живых организмах, а также ультраструктуру биологических систем на всех уровнях организации живой материи — от субмолекулярного и молекулярного до клетки и целого организма. Развитие Б. тесно связано с интенсивным взаимопроникновением идей, теоретических подходов и методов современной биологии, физики, химии и математики. Развитие биологии показало, что для понимания и изучения элементарных биологических явлений необходимо применение понятий и методов точных наук. Такой подход оправдан тем, что все биологические объекты представляют в конечном итоге совокупность атомов и молекул и подчиняются физическим и химическим закономерностям. Но так как биологические системы — это самоорганизующиеся системы, сложившиеся в процессе эволюции, им присущи многие свойства, не имеющие места в неживой природе. Сложность биологических систем обеспечивает протекание процессов, маловероятных для условий, обычно рассматриваемых в физике. Б. в основном рассматривает целостные системы, не разлагая их, по возможности, на химические компоненты. В связи с этим возникает необходимость перерабатывать известные физико-химические методы, создавая высокоспециализированные биофизические методы и приёмы.

  Современная Б., согласно классификации, принятой Международным союзом теоретической и прикладной биофизики (1961), включает следующие основные разделы: молекулярная Б., в задачу которой входит исследование физических и физико-химических свойств макромолекул и молекулярных комплексов, составляющих живые организмы, а также характера взаимодействия и энергетики протекающих в них процессов; Б. клетки, изучающая физико-химические основы функции клетки, связь молекулярной структуры мембран и клеточных органелл с их функцией, механические и электрические свойства, энергетику и термодинамику клеточных процессов; Б. процессов управления и регуляции, которая занимается исследованием и моделированием внутренних связей системы управления в организмах, их физической природой, исследованием физических закономерностей живого на уровне целого организма.

  Однако исторически сложившийся круг проблем, которыми занимается Б., шире. К Б. относится: изучение влияния физических факторов на организм (см. Вибрация. Ускорение

,Невесомость); исследование биологического действия ионизирующих излучений
, которое в связи с важностью и актуальностью этого вопроса стало предметом радиобиологии,
специальной науки, выделившейся из Б. Физический анализ деятельности органов чувств, в первую очередь оптики глаза, анализ работы органов движения, дыхания, кровообращения как физических систем, вопросы прочности и эластичности тканей (см. Биомеханика) существенные, исторически сложившиеся разделы Б. Важное значение имеет и разработка физических методов исследования биологических систем — от макромолекул до целого организма, без которых невозможно современное биологическое исследование.

  Отдельные исследования биофизического характера можно проследить с 17 в. В этот период были сделаны попытки применить понятия, созданные в физике и химии, для анализа биологических явлений. Французский учёный Р. Декарт рассматривал человеческое тело как сложную машину. Он опубликовал ряд работ по исследованию органов чувств — биоакустике и оптике. Последователь Декарта — итальянский учёный Дж. А. Борелли пытался объяснять движение живых существ чисто физическими закономерностями. Л. Эйлер, профессор Петербургского университета, впервые математически описал движение крови по сосудам. М. В. Ломоносов выдвинул в 1756 одну из первых гипотез цветного зрения. Могучим толчком к физико-химическим исследованиям явлений жизни послужили опыты итальянского учёного Л. Гальвани, который доказал наличие «животного электричества». Во 2-й половине 19 в. немецкие учёные Г. Гельмгольц и В. Вундт сформулировали основные закономерности физиологической акустики и физиологической оптики. Немецкий врач Ю. Р. Майер, наблюдая насыщение кислородом гемоглобина в крови человека в тропическом и умеренном климате, сформулировал закон сохранения энергии. Г. Гельмгольц и М. Рубнер продолжили исследования этого закона на живых организмах. Работами немецких учёных Г. Гельмгольца, Э. Дюбуа-Реймона, Д. Бернштейна и ряда др. были заложены основы представлений о механизме возникновения электрических потенциалов в тканях и распространения возбуждения по нерву. Значение ионного состава и реакции среды в жизни клеток и тканей было выяснено в работах американского исследователя Ж. Лёба, немецких учёных В. Нернста и Р. Гебера.

Перейти на страницу:

Похожие книги

100 великих тайн Второй мировой
100 великих тайн Второй мировой

Самая тяжёлая и кровопролитная война в истории человечества — Вторая мировая — оставила нам множество неразгаданных тайн и загадок. Среди них: борьба за Копьё Оттона и странный полёт Гесса в Англию, трагедия Катыни и блокада Ленинграда, Ржевская битва («второй Сталинград») и операция в Манильской бухте, засекреченные катастрофы кораблей и пропажи художественных ценностей… Подвиги разведчиков и покушения на вождей и полководцев, героизм подпольщиков и партизан и подлость коллаборационистов, погоня за новейшими образцами техники и странные действия политиков, пропагандистские акции и финансовые диверсии…Обо всём этом увлекательно повествуется на страницах очередной книги из серии «100 великих».

Николай Николаевич Непомнящий

История / Энциклопедии / Образование и наука / Словари и Энциклопедии