Читаем Большая Советская Энциклопедия (ЧА) полностью

  Ч.-н. а. используются в коротковолновой радиосвязи, телеметрии, радиоастрономии и т.д. В 70-х гг. созданы лёгкие и сравнительно простые по конструкции Ч.-н. а. для различных частотных диапазонов. Так, в диапазоне декаметровых волн разработаны проволочные логопериодические антенны, в диапазонах сантиметровых и миллиметровых волн — спиральные антенны из ленточных проводников, нанесённых на стеклопластиковую подложку фотохимическим способом. Ведутся работы по созданию остронаправленных Ч.-н. а. в виде рупорных антенн с поперечноребристыми стенками, антенных решёток из логопериодических или конических спиральных излучателей, располагаемых по радиусам в определённом секторе круга.

  Лит.: Бененсон Л. С., Слабонаправленные широкодиапазонные антенны, в сборнике: Современные проблемы антенно-волноводной техники, М., 1967; Рамзей В., Частотно независимые антенны, пер. с англ., М., 1968; Фикс М, Е., Рупорные антенны с ребристыми стенками. (Обзор), «Информационный бюлл. НИИЭИР. Радиоэлектроника за рубежом», 1976, в. 10.

  Л. С. Бененсон.

Частотный метод

Часто'тный ме'тод в теории автоматического управления, метод оценки динамических свойств системы автоматического управления, основанный на использовании её частотных характеристик , выражающих установившуюся реакцию системы на входной гармонический сигнал. Установившаяся реакция стационарной линейной системы на входной сигнал x1 = A1 e j

wt является также гармоническим сигналом x2 = A2. e
j (wt+j). Выходной и входной сигналы связаны через комплексную передаточную функцию x2 = W (j x1
, модуль которой выражает отношение амплитуд сигналов

а аргумент W (j w) фазовый сдвиг j(w) между x2 и x1 . Годограф W (j w) на комплексной плоскости при изменении w от 0 до +yen (рис. 1 ) называют амплитудно-фазовой характеристикой (АФХ). Каждой точке годографа соответствует определённая частота. Длина вектора, проведённого из начала координат в точку АФХ, соответствующую частоте w, равна ½W (j w)½, а фазовый сдвиг вектора относительно вещественной положительной полуоси — аргументу

W (j w). Зависимость модуля и аргумента от частоты выражается амплитудно-частотной и фазовой частотной характеристиками (АЧХ и ФЧХ). При построении логарифмической амплитудно-частотной и фазовой частотной характеристик (ЛАЧХ и ЛФЧХ) по оси абсцисс откладывают в логарифмическом масштабе частоту, а по осям ординат в линейном масштабе — значение модуля, выраженное в децибеллах ½W (j w)½ дб (для ЛАЧХ), и аргумент j(w) (для ЛФЧХ) (рис. 2 ). Частотные характеристики строят либо по комплексной передаточной функции, полученной из дифференциального уравнения системы, либо по результатам измерения отношения амплитуд и фазового сдвига между сигналами при различной частоте. Частотные характеристики (АФХ или ЛАЧХ и ЛФЧХ) используют для исследования
устойчивости систем автоматического управления и качественных показателей переходных процессов в ней. В теории автоматического регулирования Ч. м. был введён в 1936—38 А. В. Михайловым.

  Используя критерий Найквиста, можно судить об устойчивости замкнутой линейной системы (т. е. системы с обратной связью) по АФХ разомкнутой системы: замкнутая система устойчива, если АФХ разомкнутой системы не охватывает критической точки с координатами — 1,0 (рис. 1 ). Устойчивость замкнутой системы можно оценивать и непосредственно по ЛАЧХ и ЛФЧХ разомкнутой системы: замкнутая система устойчива, если запас по фазе j3= p — ½j(w) с

½положителен (рис. 2 ) (w
с — частота среза, при которой ЛАЧХ пересекает ось абсцисс). Частота среза может служить мерой быстродействия системы, а запас по фазе — мерой степени затухания свободных колебаний в ней. На базе логарифмических частотных характеристик и критерия Найквиста развиты весьма эффективные методы синтеза корректирующих устройств, обеспечивающих требуемые динамические свойства замкнутой системы. Аналогичные Ч. м. были разработаны для анализа и синтеза линейных импульсных систем. Качественные показатели переходного процесса в линейной системе оценивают по переходной характеристике, выражающей реакцию системы на входной скачкообразный сигнал. Советский учёный В. В. Солодовников предложил методы построения и оценки свойств переходной характеристики по вещественной частотной характеристике Р (w)=ReW (j w). Для нелинейных замкнутых систем на основе Ч. м. советский учёный Л. С. Гольдфарб разработал критерий существования и устойчивости автоколебаний, румынский математик В. М. Попов предложил критерий абсолютной устойчивости.

  Лит.: Воронов А. А., Основы теории автоматического управления, ч. 1—2, М., 1965—66; Теория автоматического управления, ч. 1—2, М., 1968—72.

  Е. Л. Львов.

Рис. 1. Амплитудно-фазовая характеристика разомкнутой системы.

Рис. 2. Логарифмические амплитудно-частотные и фазовые частотные характеристики разомкнутой системы.

Частотный словарь

Перейти на страницу:

Похожие книги

Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное
Новейшая книга фактов. Том 3. Физика, химия и техника. История и археология. Разное

Любознательность – вот то качество, которое присуще подавляющему большинству потомков Адама и Евы, любопытство – главная движущая сила великих научных открытий и выдающихся культурных достижений, грандиозных финансовых предприятий и гениальных свершений в любой сфере человеческой деятельности.Трехтомное издание, предлагаемое вашему вниманию, адресовано любознательным. Это не справочник и тем более не учебник. Главная его задача – не столько проинформировать читателя о различных занимательных и малоизвестных фактах, сколько вызвать деятельный интерес к той или иной области знаний. Его цель – помочь каждому из вас вовремя осознать свой талант и пробудить в себе музыканта, художника, поэта, бизнесмена, политика, астронома, экономиста.Книга предназначена не только школьникам, студентам, но и зрелым людям, для которых она станет надежным средством отрешиться от повседневных забот и осознать неисчерпаемое многообразие окружающего мира.Третий том посвящен физике, химии, технике, истории и археологии.

Анатолий Павлович Кондрашов

История / Медицина / Физика / Химия / Энциклопедии / Биология / Образование и наука / Словари и Энциклопедии