Читаем Большая Советская Энциклопедия (ЧИ) полностью

  Натуральные Ч., кроме основной функции — характеристики количества предметов, несут ещё другую функцию — характеристику порядка предметов, расположенных в ряд. Возникающее в связи с этой функцией понятие порядкового Ч. (первый, второй и т.д.) тесно переплетается с понятием количественного Ч. (один, два и т.д.). В частности, расположение в ряд считаемых предметов и последующий их пересчёт с применением порядковых Ч. является наиболее употребительным с незапамятных времён способом счёта предметов (так, если последний из пересчитываемых предметов окажется седьмым, то это и означает, что имеется семь предметов).

  Вопрос об обосновании понятия натурального Ч. долгое время в науке не ставился. Понятие натурального Ч. столь привычно и просто, что не возникало потребности в его определении в терминах каких-либо более простых понятий. Лишь в середине 19 в. под влиянием развития аксиоматического метода в математике, с одной стороны, и критического пересмотра основ математического анализа — с другой, назрела необходимость обоснования понятия количественного натурального Ч. Отчётливое определение понятия натурального Ч. на основе понятия множества (совокупности предметов) было дано в 70-х гг. 19 в. в работах Г. Кантора . Сначала он определяет понятие равномощности совокупностей. Именно, две совокупности называются равномощными, если составляющие их предметы могут быть сопоставлены по одному. Затем число предметов, составляющих данную совокупность, определяется как то общее, что имеет данная совокупность и всякая другая, равномощная ей совокупность предметов, независимо от всяких качественных особенностей этих предметов. Такое определение отражает сущность натурального Ч. как результата счёта предметов, составляющих данную совокупность. Действительно, на всех исторических уровнях счёт заключается в сопоставлении по одному считаемых предметов и предметов, составляющих «эталонную» совокупность (на ранних ступенях — пальцы рук и зарубки на палочке и т.д., на современном этапе — слова и знаки, обозначающие Ч.), Определение, данное Кантором, было отправным пунктом для обобщения понятия количеств. Ч. в направлении количественной характеристики бесконечных множеств.

  Другое обоснование понятия натурального Ч. базируется на анализе отношения порядка следования, которое, как оказывается, может быть аксиоматизировано. Построенная на этом принципе система аксиом была сформулирована Дж. Пеано .

 

Следует отметить, что перенесение понятия порядкового Ч. на бесконечные совокупности [порядковые трансфинитные числа и более общо' — порядковые типы (см.
Множеств теория )] резко расходится с обобщённым понятием количественного Ч.; это обусловлено тем, что количественно одинаковые (равномощные) множества могут быть упорядочены различными способами.

  Исторически первым расширением понятия Ч. является присоединение к натуральным Ч. дробных чисел. Введение в употребление дробных Ч. связано с потребностью производить измерения. Измерение какой-либо величины заключается в сравнении её с другой, качественно однородной с ней и принятой за единицу измерения. Это сравнение осуществляется посредством специфической для способа измерения операции «откладывания» единицы измерения на измеряемой величине и счёта числа таких откладываний. Так измеряется длина посредством откладывания отрезка, принятого за единицу измерения, количество жидкости — при помощи мерного сосуда и т.д. Однако не всегда единица измерения укладывается на измеряемой величине целое число раз, и этим обстоятельством, даже в самой примитивной практической деятельности, не всегда можно пренебречь. Здесь и содержится источник происхождения наиболее простых и «удобных» дробей, таких, как половина, треть, четверть и т.д. Но лишь с развитием арифметики как науки о Ч. созревает идея рассмотрения дробей с любым натуральным знаменателем и представление о дробном Ч. как о частном при делении двух натуральных Ч., из которых делимое не делится нацело на делитель (см. Дробь

).

  Дальнейшие расширения понятия Ч. обусловлены уже не непосредственными потребностями счёта и измерения, но явились следствием развития математики.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже