Читаем Большая Советская Энциклопедия (ЭФ) полностью

Эффекти'вная мо'щность, мощность двигателя, отдаваемая рабочей машине непосредственно или через силовую передачу . Различают полезную, полную и номинальную Э. м. двигателя. Полезной называют Э. м. двигателя за вычетом затрат мощности на приведение в действие вспомогательных агрегатов или механизмов, необходимых для его работы, но имеющих отдельный привод (не от двигателя непосредственно). Полная Э. м. — мощность двигателя без вычета указанных затрат. Номинальная Э. м., или просто номинальная мощность, — Э. м., гарантированная заводом-изготовителем для определённых условий работы. В зависимости от типа и назначения двигателя устанавливаются Э. м., регламентируемые стандартами или техническими условиями (например, наибольшая мощность судового реверсивного двигателя при определённой частоте вращения коленчатого вала в случае заднего хода судна — так называемая мощность заднего хода, наибольшая мощность авиационного двигателя при минимальном удельном расходе топлива — так называемая крейсерская мощность и т. п.). Э. м. зависит от форсирования (интенсификации) рабочего процесса, размеров и механического кпд двигателя.

  М. Г. Круглов.

Эффективное излучение

Эффекти'вное излуче'ние, разность между земным излучением и противоизлучением атмосферы ; измеряется пиргеометрами

.

Эффективное поперечное сечение

Эффекти'вное попере'чное сече'ние, эффективное сечение, сечение (в физике), величина, характеризующая вероятность перехода системы двух сталкивающихся частиц в результате их рассеяния (упругого или неупругого) в определённое конечное состояние. Э. п. с. s равно отношению числа dN таких переходов в единицу времени к плотности nv потока рассеиваемых частиц, падающих на мишень, т. е. к числу частиц, проходящих в единицу времени через единичную площадку, перпендикулярную к их скорости v (n — плотность числа падающих частиц): s = dN/nv

. Таким образом, Э. п. с. имеет размерность площади; обычно оно измеряется в см2 . Различным типам переходов, наблюдаемых при рассеянии частиц, соответствуют разные Э. п. с. Упругое рассеяние частиц характеризуют дифференциальным Э. п. с. d s/d W, равным отношению числа частиц, упруго рассеянных в единицу времени в единицу телесного угла, к потоку падающих частиц (d W элемент телесного угла), и полным сечением s, равным интегралу дифференциального сечения, взятому по полному телесному углу (W = 4p стер
). Для иллюстрации на рис. схематически изображен процесс упругого рассеяния точечных «классических» частиц на шарике радиуса R с «абсолютно жёсткой» поверхностью. Полное Э. п. С. рассеяния для этого случая равно геометрическому сечению шарика: s = pR2 .

  При наличии неупругих процессов полное сечение складывается из Э. п. с. упругих и неупругих процессов. Для более детальной характеристики рассеяния вводят сечение для отдельных типов (каналов) неупругих реакций. Для множественных процессов

важное значение имеют т. н. инклюзивные сечения, описывающие вероятность появления в данном столкновении какой-либо определённой частицы или группы частиц.

  Если взаимодействие между сталкивающимися частицами велико и быстро падает с расстоянием, то Э. п. с. по порядку величины, как правило, равно квадрату радиуса действия сил или геометрическому сечению системы (см. рис. ); однако вследствие специфических квантовомеханических явлений Э. п. с. могут существенно отличаться от этих значений (например, в случаях резонансного рассеяния и Рамзауэра эффекта ).

  Экспериментальные измерения Э. п. с. рассеяния дают сведения о структуре сталкивающихся частиц. Так, измерения сечения упругого рассеяния a-частиц атомами позволили открыть атомное ядро, а упругого рассеяния электронов протонами и нейтронами (нуклонами) — определить радиусы нуклонов и распределение в них электрического заряда и магнитного момента (т. н. формфакторы ). Понятие Э. п. с. используется также в статистической физике при построении кинетических уравнений.

  С . С . Герштейн .

Перейти на страницу:

Похожие книги

100 великих литературных героев
100 великих литературных героев

Славный Гильгамеш и волшебница Медея, благородный Айвенго и двуликий Дориан Грей, легкомысленная Манон Леско и честолюбивый Жюльен Сорель, герой-защитник Тарас Бульба и «неопределенный» Чичиков, мудрый Сантьяго и славный солдат Василий Теркин… Литературные герои являются в наш мир, чтобы навечно поселиться в нем, творить и активно влиять на наши умы. Автор книги В.Н. Ерёмин рассуждает об основных идеях, которые принес в наш мир тот или иной литературный герой, как развивался его образ в общественном сознании и что он представляет собой в наши дни. Автор имеет свой, оригинальный взгляд на обсуждаемую тему, часто противоположный мнению, принятому в традиционном литературоведении.

Виктор Николаевич Еремин

История / Литературоведение / Энциклопедии / Образование и наука / Словари и Энциклопедии