Читаем Большая Советская Энциклопедия (ФУ) полностью

  С начала 19 в. уже всё чаще и чаще определяют понятие Ф. без упоминания об её аналитическом изображении. В руководстве французского математика С. Лакруа (1810) говорится: «Всякая величина, значение которой зависит от одной или многих других величин, называется функцией этих последних». В «Аналитической теории тепла» Ж. Фурье (1822) имеется фраза: «Функция fx обозначает функцию совершенно произвольную, т. е. последовательность данных значений, подчиненных или нет общему закону и соответствующих всем значениям x , содержащимся между 0 и какой-либо величиной X ». Близко к современному и определение Н. И. Лобачевского («Об исчезании тригонометрических строк», 1834):»... Общее понятие требует, чтобы функцией от x называть число, которое дается для каждого x и вместе с x постепенно изменяется. Значение функции может быть дано или аналитическим выражением, или условием, которое подает средство испытывать все числа и выбирать одно из них, или, наконец, зависимость может существовать и оставаться неизвестной». Там же немного ниже сказано: «Обширный взгляд теории допускает существование зависимости только в том смысле, чтобы числа одни с другими в связи, понимать как бы данными вместе». Т. о., современное определение Ф., свободное от упоминаний об аналитическом задании, обычно приписываемое Дирихле и высказанное в 1837, неоднократно предлагалось и до него.

  В заключение отметим следующее важное открытие, принадлежащее Д. Е. Меньшову : всякая конечная измеримая (по Лебегу) на отрезке Ф. (см. Измеримые функции ) разлагается в тригонометрический ряд, сходящийся к ней почти всюду. Т. к. обычно встречаемые Ф. измеримы, то можно сказать, что практически всякая Ф. изобразима аналитически с точностью до множества меры нуль.

  Лит.: Ильин В. А., Позняк Э. Г., Основы математического анализа, 3 изд., ч. 1—2, М., 1971—73; Кудрявцев Л. Д., Математический анализ, 2 изд., т. 1—2, М., 1973; Никольский С. М., Курс математического анализа, 2 изд., т. 1—2, М.,1975

  И. П. Натансон.

Рис. к ст. Функция.

Функция передачи модуляции

Фу'нкция переда'чи модуля'ции, то же, что и частотно-контрастная характеристика .

Функция распределения

Фу'нкция распределе'ния, основное понятие статистической физики ; характеризует плотность вероятности распределения частиц статистической системы по фазовому пространству (т. е. по координатам (qi и импульсам pi ) в классической статистической физике или вероятность распределения по квантовомеханическим состояниям в квантовой статистике.

  В классической статистической физике Ф. р. f (p

, q , t ) определяет вероятность d w = f (p , q , t ) dp dq обнаружить систему из N частиц в момент времени t в элементе фазового объёма dpdq =
dp1 dq1 ... dpN 'dqN вблизи точки p1 , q1 ,..., pN , qn . Учитывая, что перестановка тождественных (одинаковых) частиц не меняет состояния, следует уменьшить фазовый объём в N ! раз; кроме того, удобно перейти к безразмерному элементу (Базового объёма, заменив dpdq
на dpdq/N ! h3N , где Планка постояннаяh определяет минимальный размер ячейки в фазовом пространстве. См. также Гиббса распределение .

Функция (филос.)

Фу'нкция (от лат. functio — совершение, исполнение) (философская), отношение двух (группы) объектов, в котором изменение одного из них ведёт к изменению другого. Ф. может рассматриваться с точки зрения следствий (благоприятных, неблагоприятных — дисфункциональных или нейтральных — афункциональных), вызываемых изменением одного параметра в др. параметрах объекта (функциональность), или взаимосвязи отдельных частей в рамках некоторого целого (функционирование).

  Понятие Ф. введено в научный оборот Г. Лейбницем . В дальнейшем в философии интерес к Ф. как одной из фундаментальных категорий возрастал по мере распространения в различных областях науки функциональных методов исследования. В наиболее развёрнутой форме функциональный подход был реализован Э. Кассирером , который разработал теорию понятий, или «функций». Эта попытка построения теории познания на основе функционального подхода оказала определённое влияние на философские представления о Ф. Исследуются проблемы обоснованности, приемлемости и доказательности функциональных высказываний и объяснений, широко используемых в биологических и социальных науках, особенно в связи с изучением целенаправленных систем. См. также статьи Система , Системный подход и лит. при них.

Перейти на страницу:

Похожие книги

100 великих казней
100 великих казней

В широком смысле казнь является высшей мерой наказания. Казни могли быть как относительно легкими, когда жертва умирала мгновенно, так и мучительными, рассчитанными на долгие страдания. Во все века казни были самым надежным средством подавления и террора. Правда, известны примеры, когда пришедшие к власти милосердные правители на протяжении долгих лет не казнили преступников.Часто казни превращались в своего рода зрелища, собиравшие толпы зрителей. На этих кровавых спектаклях важна была буквально каждая деталь: происхождение преступника, его былые заслуги, тяжесть вины и т.д.О самых знаменитых казнях в истории человечества рассказывает очередная книга серии.

Елена Н Авадяева , Елена Николаевна Авадяева , Леонид Иванович Зданович , Леонид И Зданович

История / Энциклопедии / Образование и наука / Словари и Энциклопедии