Сильное влияние оболочечных эффектов на барьер деления позволяет ожидать некоторых особенностей у ещё не синтезированных трансурановых элементов. Согласно капельной модели, атомные ядра с должны быть неустойчивы и распадаться спонтанным делением за время ~10-21
сек. Учёт влияния нуклонных оболочек на барьер деления приводит к выводу, что появление новых заполненных оболочек (по-видимому, с Z = 114 и N =
184) будет сопровождаться возрастанием высоты барьера деления до нескольких Мэв.
На этом основано предположение о существовании «острова стабильности» сверхтяжёлых трансурановых элементов вблизи Z = 114. Не исключено, что для некоторых изотопов этого «острова» время жизни превысит десятки тысяч лет. Следует, однако, иметь в виду, что пока наличие островов стабильности остаётся чисто гипотетической возможностью, опирающейся на определённые предположения о деталях структуры ядер сверхтяжёлых трансурановых элементов. Лит.:
Hahn О., Strassman F., «Naturwissenschaften», 1939, Jg 27, № 1, S. 11; Петржак К. А., Флеров Г. Н., «Журнал экспериментальной и теоретической физики», 1940, т. 10, в. 9—10, с. 1013; Френкель Я. И., там же, 1939, т. 9, в. 6, с. 641; Петржак К. А., Флеров Г. Н., «Успехи физических наук», 1961, т. 73, в. 4, с. 655; Струтинский В. М., Деление ядер, «Природа», 1976, №9; Лихман Р. Б., Деление ядра, в кн.: Физика атомного ядра и плазмы, пер. с англ., М., 1974. Рис. 1. Деление ядра 235
U, содержащего 92 протона и 143 нейтрона. Нейтрон, захватываясь ядром 235
U, превращает его в 236
U; возникающая при этом деформация приводит к разрыву ядра.Рис. 6. Зависимость сечения деления 235
U (1) и 238
U (2) от энергии нейтронов.Рис. 4. Следы осколков деления, выявленные при помощи диэлектрического детектора.
Рис. 2. Барьер деления и последовательность фигур, проходимых делящимся атомным ядром.
Рис. 5. Спектр масс осколков деления ядрa 235
U при захвате медленных нейтронов.Рис. 7. Предполагаемая форма потенциального барьера в случае спонтанного деления из изомерного состояния.
Рис. 3. Зависимость периодов Т спонтанного деления ядер в основном состоянии от отношения Z2
/A.Ядра галактик
Я'дра гала'ктик
, компактные массивные сгущения вещества в центральных частях многих галактик. Оптическая светимость Я. г. колеблется в широких пределах и, как правило, ядра ярче у галактик, имеющих большую светимость. Обычно светимость Я. г. составляет несколько процентов от светимости галактики, в отдельных случаях сравнима с её полным излучением, а у большинства галактик ядро в оптическом диапазоне вообще не наблюдается. Известны галактики, лишённые ядер, например Большое и Малое Магеллановы Облака — спутники нашей звёздной системы (Галактики), карликовые галактики типа Скульптора и Печи. В центральных областях ряда достаточно ярких (абсолютная звёздная величина
меньше —15) и массивных галактик наблюдаются крупные эллипсоидальной формы сгущения, получившие название «балдж» (от англ. bulge — выпуклость). Я. г. располагается внутри балджа и на его фоне выделяется как более яркое образование. В балджах и Я. г. обнаружены звёзды, газ и пыль. Внутри собственно ядер иногда видны звездообразные ядрышки — керны (некоторые астрономы именно их называют Я. г.). Керны обнаружены пока лишь в 4 ближайших галактиках: Туманности Андромеды, в двух её спутниках и в спиральной галактике МЗЗ. Размеры кернов составляют несколько nc
, массы — 107
—108
(масс Солнца), их абсолютные звёздные величины заключены в пределах от —9 до —12. Керны вращаются гораздо быстрее центральных областей галактик и имеют сплюснутую форму (рис. 1
). До середины 20 в. изучению Я. г. уделяли сравнительно мало внимания. В 1958 В. А. Амбарцумян
подчеркнул наличие у Я. г. особых свойств и указал на важную роль ядер в эволюции галактик. Интерес к Я. г. возрос в связи с открытием активности ядер, проявляющейся: в мощном нетепловом излучении, охватывающем практически все диапазоны (рис. 2
) от метровых радиоволн до жесткого рентгеновского излучения (оно связано с наличием частиц очень высоких энергий); в переменности потока излучения; в бурных движениях газа; в извержении струй и сгустков (конденсаций) вещества. Данные о мощности излучения Я. г. в некоторых диапазонах длин волн приведены в следующей таблице. | Мощность излучения, эрг/сек |
Тип объекта | l=22 мкм
,
инфракрасный диапазон | l=2—5А, рентгеновский диапазон | Сантиметровый диапазон радиоволн |
Квазар 3С 273 | 5,1·1045 | 1046 | 4,5·1041 |
Радиогалактика NGC 1275. | 3,8·1044 | 3·1044 | 5,6·1040 |
Эллиптическая галактика M87 | 1,4·1043 | 3,3·1042 | ~1039 |
Сейфертовская галактика NGC 4151 | 1,36·1043 | 1,7·1042 | ~1038 |
Ядро нашей Галактики | 5·1039 | 1,4·1037 | ~1034 |