Читаем Большая Советская Энциклопедия (ИН) полностью

Инва'р (от лат. invariabilis — неизменный) сплав на основе железа; содержит 36% никеля. Впервые получен во Франции в 1896 Ш. Гильомом. И. имеет малый коэффициент теплового расширения (1,5x10-6 1/°С при температуре от — 80 до 100°C). Малое тепловое расширение И. объясняется тем, что магнитострикционное уменьшение объема при нагреве компенсирует тепловое расширение (см. Магнитострикция ). И. используется для изготовления геодезических проволок и лент, линеек, деталей измерительных и контрольных приборов и др. Температура плавления И. 1430 °С, предел прочности около 490 Мн/м2 (49 кгс/мм2 ). Для повышения прочности И. подвергают холодной пластической деформации с последующей низкотемпературной термообработкой. После полировки сплав приобретает стойкость против коррозии в атмосферных условиях; на изделия из сплава, предназначенные для работы в агрессивных средах, наносят защитные покрытия. Разновидностями И. являются сплавы с особо низким коэффициентом теплового расширения (менее 1x10-6 1/°С) — суперинвар, содержащий 64% железа, 32% никеля и 4% кобальта, и нержавеющий И., содержащий 54% кобальта, 37% железа и 9% хрома.

Инвариантность (в математике)

Инвариа'нтность, неизменность, независимость от физических условий. Чаще рассматривается И. в математическом смысле — неизменность какой-либо величины по отношению к некоторым преобразованиям (см. Инварианты ). Например, если рассматривать движение материальной точки в двух системах координат, повёрнутых одна относительно другой на некоторый угол, то проекции скорости движения будут изменяться при переходе от одной системы отсчёта к другой, но квадрат скорости, а следовательно, и кинетическая энергия останутся неизменными, т. е. кинетическая энергия инвариантна относительно пространственных вращений системы отсчёта. Важным случаем преобразований являются преобразования координат и времени при переходе от одной инерциальной системы отсчёта к другой (Лоренца преобразования ). Величины, не изменяющиеся при таких преобразованиях, называются лоренц-инвариантными. Пример такого инварианта — так называемый четырёхмерный интервал

, квадрат которого равен s212 = (x1x2 )2 + (y1y2 )2 + (z1 — — z
2 )2c2 (t1t2 )2, где x1 , y1 , z
1 и x2 , y2 , z2 координаты двух точек пространства, в которых происходят некоторые события, a t1 и t2 моменты времени, в которые эти события совершаются, с — скорость света. Другой пример: напряжённости электрического Е
и магнитного Н полей меняются при преобразованиях Лоренца, но E2H2 и (EH ) являются лоренц-инвариантными. В общей теории относительности (теории тяготения ) рассматриваются величины, инвариантные относительно преобразований к произвольным криволинейным координатам, и т. д.

  Важность понятия И. обусловлена тем, что с его помощью можно выделить величины, не зависящие от выбора системы отсчёта, т. е. характеризующие внутренние свойства исследуемого объекта. И. тесно связана с имеющими большое значение сохранения законами . Равноправие всех точек пространства (однородность пространства), математически выражающееся в виде требования И. некоторой функции, определяющей уравнения движения (так называемая лагранжиана) относительно преобразований переноса начала координат, приводит к закону сохранения импульса; равноправие всех направлений в пространстве (изотропия пространства) — к закону сохранения момента количества движения; равноправие всех моментов времени — к закону сохранения энергии и т. д. (Нётер теорема ).

  В. И. Григорьев.

Инвариантность (в системах автоматического регулирования)

Инвариа'нтность, в системах автоматического регулирования, независимость какой-либо системы от приложенных к ней внешних воздействий. Независимость одной из регулируемый координат системы от всех внешних воздействии или независимость всех координат от одного какого-либо воздействия называется полиинвариантностью. Часто условия И. не могут быть выполнены точно; в этом случае говорят об И. с точностью до некоторой наперёд заданной величины. Для реализуемости условий И. необходимо наличие в системе по меньшей мере двух каналов распространения воздействия между точкой приложения внешнего воздействия и координатой, И. которой должна быть обеспечена (принцип двухканальности Б. Н. Петрова ). Идеи И. применяют в системах автоматического управления летательными аппаратами, судами, для управления химическими процессами при построении следящих систем и особенно комбинированных систем, в которых одновременно используются принципы регулирования по отклонению и по возмущению.

  Лит.: Кухтенко А. И., Проблема инвариантности в автоматике, К. ,1963; Петров Б. Н., Рутковский В. Ю., Двухкратная инвариантность систем автоматического управления, «Докл. АН СССР», 1965, т. 161, № 4.

Перейти на страницу:
Нет соединения с сервером, попробуйте зайти чуть позже