Наиболее разработаны и широко применимы методы абсолютной геохронологии (см. Геохронология
), с их помощью, по соотношению радиоактивных изотопов и дочерних продуктов их распада, например 235
U — 207
Pb; 238
U — 206
Pb; 232
Th — 208
Pb; 87
Rb — 87
Sr; 40
K — 40
Ar и др., определяется абс. возраст горных пород и минералов. Методами абс. геохронологии определён возраст пород Земли, Луны, метеоритов; по изотопному составу инертных газов (Ar, Xe и мн. др.) судят о радиационном возрасте метеоритов (времени воздействия на них космич. облучения), Изотопный состав инертных газов Земли и метеоритов несёт богатую информацию об особенностях образования вещества Солнечной системы (см. Космохимия
). Содержание 14
C(T1/2 = 5600 лет) в ископаемых остатках на Земле позволяет определять время их захоронения; с помощью 14
C определён возраст многих археол. находок. Различное содержание 14
C в годовых кольцах древесины деревьев может указывать на неодинаковую интенсивность образования его в атмосфере прошлых геол. периодов, связанную с периодами изменения интенсивности космич. облучения планеты. По парам 230
Io — 232
Th: 230
Io — 231
Ra, а также по абс. содержанию радиоактивных 14
C и 10
Bc в донных отложениях океанов и морей определяются скорость и время накопления различных донных морских осадков; средняя продолжительность накопления неконсолидированных осадков в океане достигает 150x106
лет. Важную роль в геол. исследованиях играет вариация в содержании стабильных изотопов. Несмотря на небольшое различие в физ. и хим. свойствах изотопов при некоторых геол. процессах происходит фракционирование (разделение) изотопов отдельных хим. элементов. Наибольший эффект фракционирования характерен для лёгких элементов — Н, С, N, О, S и др., т. к. для них относительная разница в массах изотопов наибольшая. Различия в свойствах изотопов тяжёлых элементов малы и на совр. уровне измерительной техники трудно определяются. Измерения ведутся на масс-спектрометре
по отношению к эталонам, изотопный состав которых принимается всеми лабораториями мира. Результаты измерений выражаются в величинах d, показывающих, на сколько % или o
/oo
содержание тяжёлого изотопа в образце больше (+d) или меньше ( — d), чем в эталоне. Одним из наиболее распространённых процессов фракционирования стабильных изотопов является изотопный обмен
. Глубина разделения изотопов определяется кинетическими и термодинамич. факторами. При высокой температуре фракционирование минимально, при низкой — максимально. При обычной температуре наиболее восстановленные соединения С, S, N содержат больше лёгкого изотопа; высокоокисленные их соединения содержат больше тяжёлого изотопа, например: CH4 | H2
S | NH3 | | | утяжеление C, S, N | | |
C | S | N2 | | | | |
CO | SO2 | NO | | | | |
CO2 | SO3 | NO2 | | | | |
| SO42— | NO3— | | |
Изучение вариаций состава стабильных изотопов позволяет решать одну из важнейших задач геохимии — восстановление истории атомов, путей их миграции в течение геол. процессов. Так, выделение 4
He и 3
He, а также других изотопов нейтральных газов при вулканич. извержениях, особенно в областях срединно-океанич. хребтов, позволяет изучать глубинные процессы, идущие в мантии Земли. Испарение водных масс с поверхности океанов и морей сопровождается разделением изотопов. В водяном паре изотопный состав водорода (1
H/2
H) и кислорода (16
O/18
O) легче, чем в морской воде. Пары воды содержат преим. 1
H2
O, а более тяжелая молекула воды (2
H2
O) обогащает океанич. воду. При конденсации паров воды снова происходит разделение изотопов, и первые капли дождя содержат более «тяжёлую» воду, чем последующие. Наиболее «лёгкая» вода кристаллизуется в виде снега и льда в полярных областях, например в Антарктике, где содержание 2
H в различных слоях снега и льда зависит от того, в каком сезоне года они накапливались. Пресные воды легче морских, и их изотопный состав иногда имеет сезонные колебания. При изотопном обмене между разными компонентами устанавливается равновесие реакции, например: . Так, образование карбонатов в условиях термодинамич. равновесия с раствором сопровождается смещением изотопного состава кислорода. Величина этого смещения зависит от температуры. Например, наибольшее обогащение карбоната кальция (CaCO3
) изотопом 16
O происходит при осаждении CaCO3
в холодной воде. Зависимость фракционирования изотопов от температуры, при которой протекает реакция, была положена в основу палеотермометрического метода; так, изучение изотопного состава кислорода известковых скелетов ископаемых морских организмов позволяет определять температуры древних морей. Метод настолько чувствителен, что по кольцам роста раковин устанавливаются сезонные колебания температуры древних морей.