Читаем Большая Советская Энциклопедия (ИЗ) полностью

  Понятие И. относится к системам объектов с заданными в них операциями или отношениями. В качестве простого примера двух изоморфных систем можно рассмотреть систему R всех действительных чисел с заданной на ней операцией сложения x = x1 + x1 и систему Р положительных действительных чисел с заданной на ней операцией умножения y = y1y2. Можно показать, что внутреннее «устройство» этих двух систем чисел совершенно одинаково. Для этого достаточно систему R отобразить в систему Р , поставив в соответствие числу х из R число у = ax (а > 1) из Р. Тогда сумме x = x1 + x2 будет соответствовать произведение

y = y1y2 чисел  соответствующих x1 и x2 . Обратное отображение Р на R имеет при этом вид x = loga y. Из любого предложения, относящегося к сложению чисел системы R , можно извлечь соответствующее ему предложение, относящееся к умножению чисел системы Р . Например, если в R сумма

членов арифметической прогрессии выражается формулой

то в Р произведение

членов геометрической прогрессии выражается формулой

(умножению на n в системе R соответствует при переходе к системе Р возведение в n

-ю степень, а делению на два — извлечение квадратного корня).

  Изучение свойств одной из изоморфных систем в значительной мере (а с абстрактно-математической точки зрения — полностью) сводится к изучению свойств другой. Любую систему объектов S', изоморфную системе S , можно рассматривать как «модель» системы S («моделировать систему S при помощи системы S' ») и сводить изучение самых разнообразных свойств системы S к изучению свойств «модели» S'.

  Общее определение И. систем объектов с заданными на них в конечном числе отношениями между постоянным для каждого отношения числом объектов таково. Пусть даны две системы объектов S и S', причём в первой определены отношения

а во второй — отношения

Системы S и S' с указанными в них отношениями называются изоморфными, если их можно поставить в такое взаимно однозначное соответствие

(где х — произвольный элемент S , а x' — произвольный элемент S' ), что из наличия Fk (x1 ,x2 ,... ) вытекает F'k (х'1 ,

х'2 ,... ), и наоборот. Само указанное соответствие называется при этом изоморфным отображением, или изоморфизмом. [В приведённом выше примере в системе R определено отношение F (x, x1, x2 ), где x = x1 + x2, в системе Р — отношение F' (y , y1 , y2 ), где у = у1у2 ; взаимно однозначное соответствие устанавливается по формулам у
= ax , х = 1oga y. ]

  Понятие И. возникло в теории групп, где впервые был понят тот факт, что изучение внутренней структуры двух изоморфных систем объектов представляет собой одну и ту же задачу.

  Аксиомы любой математической теории определяют систему объектов, изучаемую этой теорией, всегда только с точностью до И.: аксиоматически построенная математическая теория, применимая к какой-либо одной системе объектов, всегда полностью применима и к другой. Поэтому каждая аксиоматически изложенная математическая теория допускает не одну, а много «интерпретаций», или «моделей» (см., например, в ст. Геометрия , раздел Истолкование геометрии).

  Понятие И. включает в себя как частный случай понятие гомеоморфизма , играющее основную роль в топологии .

  Частным случаем И. является автоморфизм — взаимно однозначное отображение

системы объектов с заданными отношениями Fk (x1 , x2 , ...) на самоё себя, при котором из Fk (x1 , x2 , ...) вытекает F'k (x'1 , x'2 , ...), и наоборот. Это понятие тоже возникло в теории групп, но потом оказалось существенным в самых различных разделах математики.

  Лит.: Курош А. Г., Курс высшей алгебры, 3 изд., М. — Л., 1952; Энциклопедия элементарной математики, под ред. П. С. Александрова [и др.], кн. 2, М. — Л., 1951.

Изоморфизм (химич.)

Перейти на страницу:

Похожие книги

100 великих кладов
100 великих кладов

С глубокой древности тысячи людей мечтали найти настоящий клад, потрясающий воображение своей ценностью или общественной значимостью. В последние два столетия всё больше кладов попадает в руки профессиональных археологов, но среди нашедших клады есть и авантюристы, и просто случайные люди. Для одних находка крупного клада является выдающимся научным открытием, для других — обретением национальной или религиозной реликвии, а кому-то важна лишь рыночная стоимость обнаруженных сокровищ. Кто знает, сколько ещё нераскрытых загадок хранят недра земли, глубины морей и океанов? В историях о кладах подчас невозможно отличить правду от выдумки, а за отдельными ещё не найденными сокровищами тянется длинный кровавый след…Эта книга рассказывает о ста великих кладах всех времён и народов — реальных, легендарных и фантастических — от сокровищ Ура и Трои, золота скифов и фракийцев до призрачных богатств ордена тамплиеров, пиратов Карибского моря и запорожских казаков.

Андрей Юрьевич Низовский , Николай Николаевич Непомнящий

История / Энциклопедии / Образование и наука / Словари и Энциклопедии
100 знаменитых загадок истории
100 знаменитых загадок истории

Многовековая история человечества хранит множество загадок. Эта книга поможет читателю приоткрыть завесу над тайнами исторических событий и явлений различных эпох – от древнейших до наших дней, расскажет о судьбах многих легендарных личностей прошлого: царицы Савской и короля Макбета, Жанны д'Арк и Александра I, Екатерины Медичи и Наполеона, Ивана Грозного и Шекспира.Здесь вы найдете новые интересные версии о гибели Атлантиды и Всемирном потопе, призрачном золоте Эльдорадо и тайне Туринской плащаницы, двойниках Анастасии и Сталина, злой силе Распутина и Катынской трагедии, сыновьях Гитлера и обстоятельствах гибели «Курска», подлинных событиях 11 сентября 2001 года и о многом другом.Перевернув последнюю страницу книги, вы еще раз убедитесь в правоте слов английского историка и политика XIX века Томаса Маклея: «Кто хорошо осведомлен о прошлом, никогда не станет отчаиваться по поводу настоящего».

Илья Яковлевич Вагман , Инга Юрьевна Романенко , Мария Александровна Панкова , Ольга Александровна Кузьменко

Фантастика / Публицистика / Энциклопедии / Альтернативная история / Словари и Энциклопедии